Preprints, published papers, slides, posters & software.
Lecture notes
Lecture notes
- Stochastic Simulation: From Uniform Random Numbers to Generative Models (Draft), O. D. Akyildiz, 2023 [PDF], [Jupyter Book].
- Statistical Finite Elements via Interacting Particle Langevin Dynamics, A. Glyn-Davies, C. Duffin, I. Kazlauskaite, M. Girolami, O. D. Akyildiz. 2024, [arXiv].
- A Primer on Variational Inference for Physics-Informed Deep Generative Modelling, A. Glyn-Davies, A. Vadeboncoeur, O. D. Akyildiz, I. Kazlauskaite, M. Girolami, 2024, [arXiv].
- Kinetic Interacting Particle Langevin Monte Carlo, P. F. Valsecchi Oliva, O. D. Akyildiz, 2024, [arXiv].
- Proximal Interacting Particle Langevin Algorithms, P. C. Encinar, F. R. Crucinio, O. D. Akyildiz, 2024, [arXiv].
- A Multiscale Perspective on Maximum Marginal Likelihood Estimation, O. D. Akyildiz, M. Ottobre, I. Souttar, 2024, [arXiv].
- Efficient Prior Calibration From Indirect Data, O. D. Akyildiz, M. Girolami, A. M. Stuart, A. Vadeboncoeur, 2024, [arXiv].
- On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates, S. Bruno, Y. Zhang, D. Lim, O. D. Akyildiz, S. Sabanis, 2023, [arXiv].
- Tweedie Moment Projected Diffusions For Inverse Problems, B. Boys, M. Girolami, J. Pidstrigach, S. Reich, A. Mosca, O. D. Akyildiz, 2023, [arXiv].
- Adaptively Optimised Adaptive Importance Samplers, C. A. C. C. Perello, Ö. D. Akyildiz, 2023, [arXiv].
- Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood Estimation, Ö. D. Akyildiz, F. R. Crucinio, M. Girolami, T. Johnston, S. Sabanis, 2023, [arXiv].
- \(\Phi\)-DVAE: Physics-Informed Dynamical Variational Autoencoders for Unstructured Data Assimilation, A. Glyn-Davies, C. Duffin, Ö. D. Akyildiz, M. Girolami, Journal of Computational Physics, 2024, [journal], [arXiv].
- Global convergence of optimized adaptive importance samplers, Ö. D. Akyildiz, 2024 (to appear), Foundations of Data Science (FoDS), [journal], [arXiv].
- Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization, Ö. D. Akyildiz, S. Sabanis, Journal of Machine Learning Research (JMLR), 2024, [journal], [arXiv].
- Sequential discretisation schemes for a class of stochastic differential equations and their application to Bayesian filtering, Ö. D. Akyildiz, D. Crisan, J. Miguez, SIAM Journal on Numerical Analysis, 2024, [journal], [arXiv].
- Fully probabilistic deep models for forward and inverse problems in parametric PDEs, A. Vadeboncoeur, Ö. D. Akyildiz, I. Kazlauskaite, M. Girolami, F. Cirak, Journal of Computational Physics (2023), [arXiv], [journal].
- Gradient-based Adaptive Importance Samplers, V. Elvira, E. Chouzenoux, Ö. D. Akyildiz, L. Martino, Journal of the Franklin Institute, 2023 [arXiv], [journal].
- Random Grid Neural Processes for Parametric Partial Differential Equations, A. Vadeboncoeur, I. Kazlauskaite, F. Cirak, M. Girolami, Ö. D. Akyildiz, International Conference of Machine Learning (ICML), 2023, [arXiv].
- Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under local conditions in nonconvex optimization, Y. Zhang, Ö. D. Akyildiz, T. Damoulas, S. Sabanis, Journal of Applied Mathematics and Optimization, 2023, [journal, arXiv].
- Statistical Finite Elements via Langevin Dynamics, Ö. D. Akyildiz*, C. Duffin*, S. Sabanis, M. Girolami, SIAM/ASA Journal of Uncertainty Quantification, 2022 [journal].
- Probabilistic sequential matrix factorization, Ö. D. Akyildiz*, G. J.J. van den Burg*, T. Damoulas, M. F. J. Steel, AISTATS 2021, [arXiv], [code] (*joint first authors).
- Convergence rates for optimised adaptive importance samplers, Ö. D. Akyıldız, J. Miguez. Statistics and Computing, 31, 12 (2021), [journal] [arXiv].
- VarGrad: A Low Variance Gradient Estimator for Variational Inference, L. Richter, A. Boustati, N. Nuesken, F. J. Ruiz, Ö. D. Akyildiz, NeurIPS 2020, [arXiv].
- Generalized Bayesian Filtering via Sequential Monte Carlo, A. Boustati*, Ö. D. Akyildiz*, T. Damoulas, A. M. Johansen, NeurIPS 2020, [arXiv].
- Parallel sequential Monte Carlo for stochastic gradient-free nonconvex optimization, Ö. D. Akyildiz, D. Crisan, J. Miguez. Statistics and Computing, 2020, [journal].
- Nudging the particle filter, Ö. D. Akyıldız, J. Miguez. Statistics and Computing, 2020, [journal], [arXiv], [poster].
- A probabilistic incremental proximal gradient method, Ö. D. Akyildiz, E. Chouzenoux, V. Elvira, J. Miguez. IEEE Signal Processing Letters (to appear), [IEEExplore], [arXiv], 2019.
- Dictionary filtering: A probabilistic approach to online matrix factorisation, Ö. D. Akyildiz, J. Miguez. Signal, Image, and Video Processing, June 2019, 13(4):737-744. [journal], [pdf].
- The Incremental Proximal Method: A Probabilistic Perspective, Ö. D. Akyıldız, V. Elvira, J. Miguez. ICASSP, 2018, [arXiv] .
- Adaptive noisy importance sampling for stochastic optimization, Ö. D. Akyıldız, I. P. Marino, J. Miguez. IEEE CAMSAP 2017, [pdf], [IEEExplore].
- On the relationship between online optimizers and recursive filters, Ö. D. Akyıldız, V. Elvira, J. F. Bes, J. Miguez. NIPS Workshop on Optimizing the Optimizers, December 2016, Barcelona, Spain, [pdf], [poster].
- A probabilistic interpretation of replicator-mutator dynamics, Ö. D. Akyıldız, December 2017, [arXiv].
- Matrix Factorisation with Linear Filters, Ö. D. Akyıldız, September 2015, [arXiv], [discussion], [slides].
- Online Matrix Factorisation via Broyden Updates, Ö. D. Akyıldız, June 2015, [arXiv], [MLSS poster].
- Primal-Dual Algorithms for Audio Decomposition Using Mixed Norms, İ. Bayram and Ö. D. Akyıldız. Signal, Image and Video Processing, 8(1):95-110, January 2014. [pdf].
- An EM Algorithm for Learning in Controlled Linear Dynamical Systems, O. D. Akyildiz, 2013, [pdf].
- An Analysis Prior Based Decomposition Method for Audio Signals, Ö. D. Akyıldız, İ. Bayram, EUSIPCO 2012.