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Introduction

Interpretation of optimization algorithms as probabilistic inference methods pro-
vides insight, paves a way to quantify the uncertainty over the solutions, and can
be used to obtain more stable update rules. In this work, we develop a proba-
bilistic insight for a class of online optimization algorithms, called Incremental
Proximal Methods (IPMs).

General context. Online optimizers randomly sample a data point and update
the parameter via some update rule. Stochastic gradient descent (SGD) is the
canonical example. This structure is also shared by filtering algorithms although
they are derived from an entirely different perspective. We aim to shed light onto
this similarity and explore relations.

Notation: [n] = {1, . . . , n}. At each iteration, we randomly sample ik ∼ [n]

and choose fik to optimize. We abuse the notation and denote these functions
with fk := fik.

Incremental Proximal Methods

In machine learning, it is of crucial interest to solve unconstrained optimization
problems of the following form,

min
θ∈Rd

N∑
i=1

fi(θ) (1)

SGD chooses fk randomly and takes a (noisy) gradient step. Another class of al-
gorithms which can be used here is called Incremental Proximal Methods (IPMs).

The IPM [1] minimises the cost (1) in the following way,

θk = proxλ,fk(θk−1) = argmin
θ∈Rd

fk(θ) + λ∥θ − θk−1∥22 (2)

IPM for the Linear-Quadratic Cost as a Recursive Filter

Given an output vector Y ∈ Rn and inputs X ∈ Rd×n, the linear regression prob-
lem is to fit a vector θ ∈ Rd which satisfies Y ≈ θ⊤X . The problem can be
formulated as solving,

min
θ∈Rd

f(θ) = min
θ∈Rd

∥Y − θ⊤X∥22

This implies, f(θ) =
∑n

k=1 fk(θ) where fk(θ) = ∥yk − θ⊤xk∥22. The incremental
proximal iteration will result in the update rule

θk = θk−1 +
xk(yk − θ⊤k−1xk)

λ+ x⊤
k xk

. (3)

Can we obtain (3) as a recursive posterior-mean update in a (Gaussian) proba-
bilistic model?

The answer to the question is yes, a similar update rule can be derived using
a probabilistic model. We formulate,

p(θ) = N (θ; θ0, V0), p(yk|θ) = N (yk; θ
⊤xk, λ).

Given the data sequence y1:k, the posterior distribution p(θ|y1:k) is Gaussian. We
denote it as p(θ|y1:k) = N (θ; θk, Vk). The sufficient statistics θk and Vk can be
computed recursively by,

θk = θk−1 +
Vk−1xk(yk − θ⊤k−1xk)

λ+ x⊤
k Vk−1xk

, (4)

and

Vk = Vk−1 −
Vk−1xkx

⊤
k Vk−1

λ+ x⊤
k Vk−1xk

. (5)

The relationship between the Eqs. (3) and (4) can be easily seen. At this point, it
is also instructive to look at the SGD update for minimizing the linear-quadratic
cost which is given by,

θk = θk−1 + γkxk(yk − θ⊤k−1xk), (6)

Extended Recursive Filter as an IPM for Nonlinear Case

Consider a nonlinear regression problem where we have yk ≈ g(xk, θ) where
g(·, θ) is a nonlinear function of θ. Since xk’s are given (inputs in the machine
learning setting), we put gk(θ) := g(xk, θ) and note that gk(θ) : Rd → R. The
problem of interest is then

min
θ∈Rd

f(θ) = min
θ∈Rd

n∑
k=1

∥yk − gk(θ)∥22. (7)

The incremental proximal iteration for this problem requires to solve

θk = argmin
θ∈Rd

∥yk − gk(θ)∥22 + λ∥θ − θk−1∥22

at each iteration.

To arrive at the extended filtering solution, similarly to the last section, we formu-
late the probabilistic model,

p(θ) = N (θ; θ0, V0), p(yk|θ) = N (yk; gk(θ), λ).

Now since the model is nonlinear, the EKF is a natural candidate to use. We
denote hk = ∇θgk(θk−1) and the EKF recursions are given by,

θk = θk−1 +
Vk−1hk(yk − gk(θk−1))

λ+ h⊤
k Vk−1hk

(8)

and

Vk = Vk−1 −
Vk−1hkh

⊤
k Vk−1

λ+ h⊤
k Vk−1hk

.

Note that this is different from a naive linearization of gk (i.e. using hk as the ob-
servation model) and then deriving the IPM. In that case, the term (yk− gk(θk−1))

would be replaced by (yk − h⊤
k θk−1).

It is again instructive here to look at the SGD update for nonlinear-quadratic
cost functions

θk = θk−1 + γkhk(yk − gk(θk−1)),

to compare it with (8). From this perspective, SGD can be seen in a similar spirit
to extended recursive filters with a hand-tuned covariance.

A Numerical Result and Discussion

We compare the approximate IPM, EKF, and SGD on a simple problem of fitting
a sigmoid function. The model used in the experiment is the following model,

yk = gk(θ) + ϵk =
1

1 + exp(α+ β⊤xk)
+ ϵk
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Figure 1: Results on fitting a sigmoid function using EKF, SGD, and approxi-
mate nonlinear IPM. On the left, λtr = 0.005 and λ = 1. On the right, data is
much more noisy since λtr = 0.05 and λ = λtr. The high noise level, however
rightly specified, causes instability for the IPM updates. It is apparent from the
experiments that one can safely overestimate the noise level λ and big values of λ
is always safer for the IPM. However, the EKF does not suffer from the problem.
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