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Introduction

Formally, matrix factorization is the problem of factorizing a data matrix
Y ∈ Rm×n into [1],

Y ≈CX (1)

where C ∈ Rm×r and X ∈ Rr×n. Here r is the approximation rank which is typi-
cally selected by hand. These methods can be interpreted as dictionary learning
where columns of C defines the elements of the dictionary, and columns of X
can be thought as associated coefficients.

Online matrix factorization problem consists of updating C and associated
columns of X by only using a subset of columns of Y which is the problem we
are interested in this work.× ××× × × ×× ××× × × ×
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Notation: [n] = {1, . . . ,n}. We denote a random index at time t with kt ∈ [n].

Construction of the Objective Function

We would like to update dictionary matrix C and a column of the X matrix xkt

after observing a single column ykt of the dataset Y . For this purpose, we make
the following crucial observations:

• We need to ensure ykt ≈Ctxkt at time t for kt ∈ [n],
• We need to penalize Ct estimates in such a way that it should be “common to

all observations”, rather than being overfitted to each observation.

Approach: Suppose we are given ykt for kt ∈ [n] and Ct−1, then we solve the
following optimization problem for each t,

(x∗kt
,C∗t ) = argmin

xkt ,Ct

∥∥ykt−Ctxkt

∥∥2
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∥∥Ct−Ct−1
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where λ ∈ R is a parameter which simply chooses how much emphasis should
be put on specific terms in the cost function. This is the same cost function used
in quasi-Newton methods to estimate the Hessian matrix [2].

Derivation of Updates

Update for xkt: Solving for xkt becomes a least squares problem, the solution
is the following pseudoinverse operation,

xkt = (C⊤t Ct)
−1C⊤t ykt, (3)

Update for Ct: The update is,

Ct = (λCt−1+ yktx
⊤
kt
)(λ I + xktx

⊤
kt
)−1, (4)

and by using Sherman-Morrison formula for the term (λ I + xktx
⊤
kt
)−1, Eq. (4)

can be written more explicitly as,

Ct =Ct−1+
(ykt−Ct−1xkt)x

⊤
kt

λ + x⊤kt
xkt

, (5)

Algorithm 1. Online Matrix Factorization via Broyden Updates (OMF-B)
• Initialise C0 randomly and set t = 1.
• for t = 1 : N

– Pick kt ∈ [n] at random.
– Read ykt ∈ Rm

– for Iter = 1 : 2

xkt = (C⊤t Ct)
−1C⊤t ykt

Ct =Ct−1+
(ykt−Ct−1xkt)x

⊤
kt

λ + x⊤kt
xkt

– end for
• t← t +1
One can increase the number of inner iterations.

Some Modifications

Mini-Batch Setting

We denote a mini-batch dataset at time t with yvt. Hence yvt ∈Rm×|vt| where |vt|
is the cardinality of the index set vt. Update for xvt reads as,

xvt = (C⊤t Ct)
−1C⊤t yvt, (6)

and update rule for Ct can be given as,

Ct = (λCt−1+ yvtx
⊤
vt
)(λ I + xvtx

⊤
vt
)−1, (7)

which is no longer same as the Broyden’s rule for mini-batch observations.

Handling Missing Data

Define a mask M ∈ {0,1}m×n. We denote the data matrix with missing en-
tries with M⊙Y where ⊙ denotes the Hadamard product. Suppose we have an
observation ykt at time t and some entries of the observation are missing. We
denote the mask vector for this observation as mkt which is kt’th column of M.
We need another mask MCt ∈ {0,1}m×r.

MCt = [mkt, . . . ,mkt]︸ ︷︷ ︸
r times

.

The update rule for xkt becomes the following pseudoinverse operation (see pa-
per for derivation),

xkt =((MCt⊙Ct)
⊤(MCt⊙Ct))

−1(MCt⊙Ct)
⊤(mkt⊙ ykt),

and the update rule for Ct (for fixed xkt) can trivially be given as,

Ct =Ct−1+
(mkt⊙ (ykt−Ct−1xkt))x

⊤
kt

λ + x⊤kt
xkt

.

We denote the results on dataset with missing entries in Experiments.

Experimental Results

• Comparison with stochastic gradient matrix factorisation (SGMF) (left col-
umn) and nonnegative matrix factorisation (NMF) (right column).
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Figure 1: Comparison with SGMF. (a)
SGMF processes the dataset in a much
less wall-clock time, but we achieve a
lower error in the same wall-clock time.
(b) Our algorithm uses samples in a
more efficient manner.

Figure 2: A demonstration on Olivetti
faces dataset consists of 400 faces of
size 64× 64 with %25 missing data.
We vectorized each face and construct
a data matrix of size 4096×400. Some
example faces with missing data are
on the left. Comparison of results of
OMF-B (middle) with 30 online passes
over dataset and NMF with 1000 batch
iterations (right). Signal-to-noise ra-
tios (SNR) are: OMF-B: 11.57, NMF:
12.13 where initial SNR is 0.75.
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