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Sequential computation for inference and optimization

Inference: Given a state space model,

x0 ∼ τ0(dx0),

xt|xt−1 ∼ τt(dxt|xt−1),

yt|xt ∼ gt(yt|xt),

we are interested in the stochastic filtering
problem: Estimating πt(xt|y1:t) in high-
dimensional systems and model misspeci-
fication.

y1 y2 . . .

x1x0 x2 . . . xt

yt

Optimization: Given an optimization
problem

θ? = argmin
θ∈Θ

f(θ),

where f(θ) =
∑n
k=1 fk(θ), we are inter-

ested in stochastic optimization by fram-
ing the problem as a sequential inference
problem of a matched probabilistic model.

y1 y2 · · · yt

θ
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Stochastic filtering problem
Motivation and contributions

I Of critical importance in many fields such as geophysics,
object tracking, finance, ecology, aerospace.

I We focus on a class of computational methods called particle
filters to solve this problem.

I Particle filters tend to fail solving this problem when
I State-space models are high-dimensional,
I Transition models τt(dxt|xt−1) for t ≥ 1 are misspecified.

I Our first main contribution is to introduce a novel particle filter
which aims at tackling these two difficulties, while keeping the
computational tractability of simple particle filters.
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Stochastic optimization problem
Motivation and contributions

I Widely popular methods for training models in machine
learning when the cost function is defined over a very big
number of data points (big-data setting).

I Many algorithms have been proposed, however:
I Most of them have parameters to tune (e.g. a step-size) and

produce unstable behaviour.
I They are mainly empirical, in the sense that, many parameters

do not have intuitive meanings.

I We will show that, for a certain class of problems, we can build
probabilistic models which are matched to the cost function.
I A probabilistic interpretation may provide automatic parameter

tuning with an intuitive meaning (e.g. a covariance matrix).

I As a byproduct, we will obtain a sampling-based probabilistic
optimization method, algorithmically similar to a particle filter.
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Stochastic filtering: Nudged particle filter
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State-space models

y1 y2 . . .

x1x0 x2 . . . xt

yt

Figure: The conditional independence structure of a state-space model.

(xt)t≥0: hidden signal process, (yt)t≥1 the observation process.

x0 ∼ π0(dx0), (prior distribution)
xt|xt−1 ∼ τt(dxt|xt−1), (transition model)
yt|xt ∼ gt(yt|xt), (likelihood)

xt ∈ X where X is the state-space. We use: gt(xt) = gt(yt|xt).
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State-space models
problem definition

We are interested in estimating expectations,

(ϕ, πt) =

∫
ϕ(xt)πt(xt|y1:t)dxt =

∫
ϕ(xt)πt(dxt),

sequentially as new data arrives. This problem is known as the
filtering problem.

y1 y2 . . .

x1x0 x2 . . . xt

yt

Algorithm:
Predict

ξt(dxt) =

∫
πt−1(dxt−1)τt(dxt|xt−1)

Update

πt(dxt) = ξt(dxt)
gt(yt|xt)

p(yt|y1:t−1)
.
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Bootstrap particle filter

A general algorithm to estimate expectations of any test function
ϕ(xt) given y1:t. Assume we are given {x(i)

t−1}Ni=1 for time t− 1.
I Sampling: draw

x̄
(i)
t ∼ τt(dxt|x

(i)
t−1)

independently for every i = 1, . . . , N .
I Weighting: compute

w
(i)
t = gt(x̄

(i)
t )/Z̄Nt

for every i = 1, . . . , N , where Z̄Nt =
∑N

i=1 gt(x̄
(i)
t ).

I Resampling: draw independently,

x
(i)
t ∼ π̃t(dx) :=

∑
i

w
(i)
t δx̄(i)

t
(dx) for i = 1, ..., N.

πNt−1 →︸︷︷︸
sampling

ξNt →︸︷︷︸
weighting

π̃Nt →︸︷︷︸
resampling

πNt .
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Bootstrap particle filter

For any t the estimation of (ϕ, πt) is given by,

(ϕ, πt) =

∫
ϕ(xt)πt(dxt) ≈

∫
ϕ(xt)π

N
t (dxt) =

1

N

N∑
i=1

ϕ(x
(i)
t ) = (ϕ, πNt ).

Theorem. (Del Moral and Miclo 2000) Under suitable assumptions,
one can prove that for bounded test functions
‖ϕ‖∞ = supx∈X |ϕ(x)| <∞,

‖(ϕ, πt)− (ϕ, πNt )‖p ≤
ct‖ϕ‖∞√

N

where ct <∞ is a constant independent of N .
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Bootstrap particle filter
practical problems

y1 y2 . . .

x1x0 x2 . . . xt

yt

I Bootstrap PF does not perform well when the signal process is
high-dimensional.

I Bootstrap PF is not robust to model misspecification.

One remedy is to use general and better proposal distributions.
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General particle filter

A general algorithm to estimate expectations of any test function
ϕ(xt) given y1:t.
I Generate the initial particle system {x(i)

0 }Ni=1 by drawing N
times independently from the prior π0.

I For t ≥ 1,
I Sampling: draw

x̄
(i)
t ∼ qt(dxt|x

(i)
1:t−1, yt)

independently for every i = 1, . . . , N .
I Weighting: compute

w
(i)
t ∝ gt(x̄

(i)
t )τt(x̄

(i)
t |x

(i)
t−1)/qt(x̄

(i)
t |x

(i)
1:t−1, yt)

for every i = 1, . . . , N .
I Resampling: draw x

(i)
t , i = 1, ..., N from the discrete

distribution
∑
i w

(i)
t δ

x̄
(i)
t

(dx), independently for i = 1, ..., N .

Choosing the proposal carefully can help tackling the problems. But
weight computations can get complicated and costly!
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πNt−1 →︸︷︷︸
sampling

ξNt →︸︷︷︸
weighting

π̃Nt →︸︷︷︸
resampling

πNt .

I Bootstrap particle filter is a simple and efficient algorithm.
I It performs poorly in high-dimensional and misspecified

settings.
I Using a general proposal may be helpful.

→ It is not easy to choose a good proposal.

To alleviate the problems of the BPF, we propose to use a simple
scheme using the nudging idea.
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Nudging
a practical solution to the problem

Nudging is a practical scheme aimed at solving aforementioned
problems, proposed in the data assimilation literature (Van Leeuwen
2009).

I It is usually applied after the sampling step and consists of
moving particles to “good” regions in the state-space.

I In the literature, it is usually (vaguely) defined as pushing
particles towards observations.
I Minimizing some distance function between yt and each x(i)

t .
I Kalman-like steps

I Moving particles around the state-space defines a complicated
proposal, for which the weight computations are costly.

I However, it can be very efficient with a very low number of
particles!

14 / 62



Nudging
a practical solution to the problem

Nudging is a practical scheme aimed at solving aforementioned
problems, proposed in the data assimilation literature (Van Leeuwen
2009).
I It is usually applied after the sampling step and consists of

moving particles to “good” regions in the state-space.

I In the literature, it is usually (vaguely) defined as pushing
particles towards observations.
I Minimizing some distance function between yt and each x(i)

t .
I Kalman-like steps

I Moving particles around the state-space defines a complicated
proposal, for which the weight computations are costly.

I However, it can be very efficient with a very low number of
particles!

14 / 62



Nudging
a practical solution to the problem

Nudging is a practical scheme aimed at solving aforementioned
problems, proposed in the data assimilation literature (Van Leeuwen
2009).
I It is usually applied after the sampling step and consists of

moving particles to “good” regions in the state-space.
I In the literature, it is usually (vaguely) defined as pushing

particles towards observations.

I Minimizing some distance function between yt and each x(i)
t .

I Kalman-like steps

I Moving particles around the state-space defines a complicated
proposal, for which the weight computations are costly.

I However, it can be very efficient with a very low number of
particles!

14 / 62



Nudging
a practical solution to the problem

Nudging is a practical scheme aimed at solving aforementioned
problems, proposed in the data assimilation literature (Van Leeuwen
2009).
I It is usually applied after the sampling step and consists of

moving particles to “good” regions in the state-space.
I In the literature, it is usually (vaguely) defined as pushing

particles towards observations.
I Minimizing some distance function between yt and each x(i)

t .
I Kalman-like steps

I Moving particles around the state-space defines a complicated
proposal, for which the weight computations are costly.

I However, it can be very efficient with a very low number of
particles!

14 / 62



Nudging
a practical solution to the problem

Nudging is a practical scheme aimed at solving aforementioned
problems, proposed in the data assimilation literature (Van Leeuwen
2009).
I It is usually applied after the sampling step and consists of

moving particles to “good” regions in the state-space.
I In the literature, it is usually (vaguely) defined as pushing

particles towards observations.
I Minimizing some distance function between yt and each x(i)

t .
I Kalman-like steps

I Moving particles around the state-space defines a complicated
proposal, for which the weight computations are costly.

I However, it can be very efficient with a very low number of
particles!

14 / 62



Nudging
a practical solution to the problem

Nudging is a practical scheme aimed at solving aforementioned
problems, proposed in the data assimilation literature (Van Leeuwen
2009).
I It is usually applied after the sampling step and consists of

moving particles to “good” regions in the state-space.
I In the literature, it is usually (vaguely) defined as pushing

particles towards observations.
I Minimizing some distance function between yt and each x(i)

t .
I Kalman-like steps

I Moving particles around the state-space defines a complicated
proposal, for which the weight computations are costly.

I However, it can be very efficient with a very low number of
particles!

14 / 62



Nudging
from a classical particle filtering perspective

I Generate the initial particle system {x(i)
0 }Ni=1 by drawing N

times independently from the prior π0.
I For t ≥ 1,

I Sampling: draw x̂
(i)
t ∼ τt(dxt|x

(i)
t−1) independently for every

i = 1, . . . , N .
I Nudging (a deterministic transformation): x̄(i)

t = αytt (x̂
(i)
t ).

I Weighting: compute

w
(i)
t ∝ gt(x̄

(i)
t )τt(x̄

(i)
t |x

(i)
t−1)/qt(x̄

(i)
t |x

(i)
1:t−1, yt)

for every i = 1, . . . , N .
I Resampling: draw x

(i)
t , i = 1, ..., N from the discrete

distribution
∑
i w

(i)
t δ

x̄
(i)
t

(dx), independently for i = 1, ..., N .

Sampling + nudging effectively induces an implicit Markov kernel:
qt(x̄

(i)
t |x

(i)
t−1, yt), which is not available in closed form and whose

evaluations require heavy computations!
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Nudged particle filter
definition of nudging operator

We aim at developing computationally efficient and well-defined
nudging schemes. We start with formalizing the nudging operator.

Definition 1
A nudging operator αytt : X→ X associated with the likelihood
function gt(x) is a map such that

if x′ = αytt (x) then gt(x
′) ≥ gt(x) (1)

for every x, x′ ∈ X.
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Nudged particle filter
the algorithm (NuPF) (Akyıldız and Míguez 2017)

I Generate the initial particle system {x(i)
0 }Ni=1 by drawing N

times independently from the prior π0.
I For t ≥ 1,

I Sampling: draw x̄
(i)
t ∼ τt(xt|x

(i)
t−1) independently for every

i = 1, . . . , N .
I Nudging: choose a set of indices It ⊂ {1, . . . , N}, then

compute x̃(i)
t = αytt (x̄

(i)
t ) for every i ∈ It. Keep x̃(i)

t = x̄
(i)
t for

every i ∈ [N ]\It.
I Weighting: compute w(i)

t = gt(x̃
(i)
t )/Z̃Nt for every

i = 1, . . . , N , where Z̃Nt =
∑N
i=1 g(x̃

(i)
t ).

I Resample: draw x
(i)
t from

∑
i w

(i)
t δ

x̃
(i)
t

(dx) independently for
i = 1, ..., N .

We do not correct the effect of nudging!

Next: what is the operator αytt and how is it implemented?
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Nudging step

I Implementation of nudging step has two crucial parts:
I Choosing particles to be nudged (constructing It).
I Pushing particles towards high-likelihood regions.

I Choosing particles:
I We choose a random subset of the index set!

I Choose M = |It| particles randomly at once from
[N ] = {1, . . . , N} (batch).

I Choose each particle to be nudged independently with
probability M/N (independent).

I Pushing particles (nudging):
I Gradient step with respect to the likelihood.
I Random search to find a direction that increases the likelihood.
I Model specific nudging.

We will only deal with the gradient step in this talk.
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Nudging step
Gradient nudging step

I Choose It.
I For every i ∈ It,

x̃
(i)
t = x̄

(i)
t + γ∇xtgt(x̄

(i)
t )

where ∇xgt(x) denotes the vector of partial derivatives of gt with
respect to the state variables, i.e.,

∇xtgt =


∂gt
∂x1,t
∂gt
∂x2,t

...
∂gt

∂xdx,t

 for xt =


x1,t

x2,t
...

xdx,t

 ∈ X.
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πNt−1 →︸︷︷︸
sampling

ξNt →︸︷︷︸
nudging

ξ̃Nt →︸︷︷︸
weighting

π̃Nt →︸︷︷︸
resampling

πNt .

I We have seen that performing nudging without correcting at
the weighting step introduces bias and this is a problem.

Next, we answer the questions:
I Does the algorithm still converge? If so, what is the rate?
I Why would it be robust to model misspecification?
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I Why would it be robust to model misspecification?

20 / 62



Analysis of the nudged particle filter – convergence
A general result

Assumption 1. The likelihood function is positive and bounded, i.e.,

gt(xt) > 0 and ‖gt‖∞ = sup
xt∈X
|gt(xt)| <∞

for t = 1, . . . , T .

Theorem 1. Let y1:T be an arbitrary but fixed sequence of obser-
vations, with T < ∞, and choose any M ≤

√
N and any map

αytt : X→ X. If Assumption 1 is satisfied and |It| = M , then

‖(ϕ, πNt )− (ϕ, πt)‖p ≤
ct,p‖ϕ‖∞√

N
(2)

for every t = 1, 2, ..., T , any ϕ ∈ B(X), any p ≥ 1 and some constant
ct <∞ independent of N .
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Analysis of the nudged particle filter – model mismatch
Nudging as an observation dependent implicit model

We can interpret the NuPF as a BPF for an alternative model.

Let us assume y1:T to be fixed and construct the alternative
dynamical modelM1 = {π0, τ̃

yt
t , g

yt
t }, where

τ̃ytt (dxt|xt−1) :=(1− εM )τt(dxt|xt−1) +

εM

∫
δαytt (x̄t)

(dxt)τt(dx̄t|xt−1),

where εM = M
N . The kernel τ̃ytt jointly represents the Markov

transition τt and independent nudging.

Note that this is for deterministic nudging operators. Different
types of nudging can translate into different implicit models.

22 / 62



Analysis of the nudged particle filter – model mismatch
Nudging as an observation dependent implicit model

We can interpret the NuPF as a BPF for an alternative model.

Let us assume y1:T to be fixed and construct the alternative
dynamical modelM1 = {π0, τ̃

yt
t , g

yt
t }, where

τ̃ytt (dxt|xt−1) :=(1− εM )τt(dxt|xt−1) +

εM

∫
δαytt (x̄t)

(dxt)τt(dx̄t|xt−1),

where εM = M
N . The kernel τ̃ytt jointly represents the Markov

transition τt and independent nudging.

Note that this is for deterministic nudging operators. Different
types of nudging can translate into different implicit models.

22 / 62



Analysis of the nudged particle filter – model mismatch
Nudging as an observation dependent implicit model

In other words, the NuPF = the BPF for the following observation
dependent dynamical model:

x0 ∼ τ0(dx),

xt|xt−1 ∼ τ̃ytt (dxt|xt−1),

yt|xt ∼ gt(yt|xt)

Dependence of transition kernel to the observation: Transition
kernels are “adapted to the data”.
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I We have shown that the NuPF has the same convergence rate
as the BPF.

I The NuPF can be interpreted as a BPF for an implicit, observation-
dependent model, which potentially explains its robustness against
model mismatch.

Next: Simulations and experiments.

24 / 62



I We have shown that the NuPF has the same convergence rate
as the BPF.

I The NuPF can be interpreted as a BPF for an implicit, observation-
dependent model, which potentially explains its robustness against
model mismatch.

Next: Simulations and experiments.

24 / 62



I We have shown that the NuPF has the same convergence rate
as the BPF.

I The NuPF can be interpreted as a BPF for an implicit, observation-
dependent model, which potentially explains its robustness against
model mismatch.

Next: Simulations and experiments.

24 / 62



Simulations - I
Lorenz 63 model

Lorenz 63 model is given by the following three-dimensional
stochastic differential equation,

dx1 = −s(x1 − x2)ds+ dw1,

dx2 = (rx1 − x2 − x1x3)ds+ dw2,

dx3 = (x1x2 − bx3)ds+ dw3,

where {wi(s)}s∈(0,∞) for i = 1, 2, 3 are 1-dimensional independent
Wiener processes and (s, r, b) ∈ R are fixed model parameters.
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Simulations - I
Lorenz 63 model - simulation and generating observations

We use the Euler-Maruyama scheme with T > 0 and obtain the
system of difference equations,

x1,t = x1,t−1 − Ts(x1,t−1 − x2,t−1) +
√
Tu1,t

x2,t = x2,t−1 + T(rx1,t−1 − x2,t−1 − x1,t−1x3,t−1) +
√
Tu2,t

x3,t = x3,t−1 + T(x1,t−1x2,t−1 − bx3,t−1) +
√
Tu3,t

where {ui,t}t∈N, i = 1, 2, 3 are i.i.d. N (0, 1). We assume that we
can only observe the variable x1,t every ts = 40 discrete time steps
and contaminated by additive noise:

yn = kox1,nts + vn, n = 1, 2, ...,

where {vn}n∈N is a sequence of i.i.d. N (0, 1) and the scale
parameter ko is assumed known.
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Simulations - I
Lorenz 63 model - model mismatch

We simulate the system with

(s, r, b) =

(
10, 28,

8

3

)
.

However, when we run the BPF and the NuPF, we set

(s, r, b) =

(
10, 28,

8

3
+ ε

)
,

where ε = 0.75.

Model uncertainty: Our knowledge about the model is imperfect!
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Simulations - I
Lorenz 63 model
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Figure: (a) The results obtained with 1,000 Monte Carlo runs for each N ∈
{10, 100, 500, 1K, 5K, 10K, 20K, 50K, 100K}. The dashed lines indicate
1 standard deviation. (b) A sample path from estimation of an unobserved
dimension (second dimension) in a run where N = 500.
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Simulations - I
Lorenz 63 model - BPF simulation
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Simulations - I
Lorenz 63 model - NuPF simulation: Watch out for the blue particles!
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Simulations - II
Lorenz 96 model

We consider Lorenz 96 model which is defined as follows,

dxi = ((xi+1 − xi−2)xi−1 − xi + F )ds+ dwi

where (wi(s))s∈(0,∞) are Wiener processes for i = 1, . . . , d.
I We set F = 8 which generates chaotic dynamics.

I Circular structure: x−1 = xd−1, x0 = xd, and xd+1 = x1.
Discretization:

xi,t = xi,t−1 + T((xi+1,t−1 − xi−2,t−1)xi−1,t−1 − xi,t−1 + F ) +
√
Tui,t

where ui,t are i.i.d N (0, 1). We observe half of the state variables,

yk,n = x(2k−1),tsn + vn,

where ts = 10 and (vn)n∈N are N (0, 1) i.i.d.
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Simulations - II
Lorenz 96 model - for fixed dimension d = 40

10
1

10
2

10
3

10
4

10
5

Number of Particles

(a)

10
-2

10
-1

10
0

10
1

N
o

rm
a
lis

e
d
 M

S
E

BPF

NuPF

10
1

10
2

10
3

10
4

10
5

Number of Particles

(b)

10
-2

10
0

10
2

10
4

W
a
ll-

c
lo

c
k
 t
im

e
s
 (

s
e
c
s
) 

x
 N

M
S

E

BPF

NuPF

Results are obtained with 1024 Monte Carlo runs for each N .
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Simulations - II
Lorenz 96 model - for varying dimensions
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Dimensions d = [10, 40, 100, 1000, 2000, 5000] and N = 500 kept fixed.
We have run the experiments for 1000 Monte Carlo runs.
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Conclusions:

I We have proposed a particle filter which
I can operate under model mismatch and high-dimensional

settings,
I as computationally efficient as the bootstrap particle filter for

most cases,
I has the same convergence rate as the BPF.

Next: Stochastic optimization.
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Stochastic optimization as Bayesian inference
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Stochastic optimization

We aim at solving optimization problems of the form

min
θ∈Θ

f(θ) where f(θ) =

n∑
i=1

fi(θ),

where Θ ⊂ Rd is the d-dimensional compact search space and n is
very large.

I Widely encountered in statistics, computer science, machine
learning.

I The standard method: Stochastic gradient descent. At
iteration t, sample a mini-batch It ⊂ {1, . . . , n}, then take,

θt = ProjΘ

(
θt−1 − γt

1

|It|
∑
i∈It

∇fi(θt−1)

)
.
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Stochastic optimization

We aim at solving optimization problems of the form

min
θ∈Θ

f(θ) where f(θ) =

n∑
i=1

fi(θ),

where Θ ⊂ Rd is the d-dimensional compact search space and n is
very large.
I In this work, we develop a probabilistic view of the problem.

I This leads to the use of probabilistic methods.
I Advantages:

I Probabilistic methods (such as Kalman or extended Kalman
based algorithms) produce more stable behaviour than
standard optimizers.

I We can use the probabilistic view to utilize standard numerical
methods to solve the problem, e.g., sampling algorithms.
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Stochastic optimization as Bayesian inference

Given a cost function f(θ) =
∑n

i=1 fi(θ), assume that we construct a
sequence of non-overlapping subsets (index sets) (It)1≤t≤T of [n] =
{1, . . . , n} where |It| = K, Ii ∩ Ij = ∅, and

⋃
t It = [n].

Then we construct

Gt(θ) = exp

(
−
∑
i∈It

fi(θ)

)
,

for t = 1, . . . , T .

The functions (Gt)1≤t≤T are termed potential functions and can be
thought of as likelihoods, defined compactly for mini-batches.
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Stochastic optimization as Bayesian inference

Given a prior measure π0, define the recursion,

πt(dθ) = πt−1(dθ)
Gt(θ)∫

ΘGt(θ)πt−1(dθ)
.

for 1 ≤ t ≤ T .

This recursion can be seen as a sequential Bayes update.

The key observation:

dπT
dπ0

(θ) ∝
T∏
t=1

Gt(θ).

Assumption. We assume that the functions Gt are bounded.
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Stochastic optimization as Bayesian inference

As a result

argmax
θ∈Θ

dπT
dπ0

(θ) = argmin
θ∈Θ

n∑
i=1

fi(θ)

since

dπT
dπ0

(θ) ∝
T∏
t=1

Gt(θ) and Gt(θ) = exp

(
−
∑
i∈It

fi(θ)

)
.

Consequently, when π0 is a uniform distribution on compact Θ

argmax
θ∈Θ

πT (θ) = argmin
θ∈Θ

n∑
i=1

fi(θ).
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The Gaussian case
Sequential Bayes as optimization (Akyıldız, Elvira, and Míguez 2018).

Consider the following model,

π0(θ) = N (θ; θ0, V0),

Gt(θ) = N (yt;x
>
t θ, λ),

then, πt(θ) = N (θ; θt, Vt) where

θt = θt−1 +
Vt−1xt(yt − x>t θt−1)

λ+ x>t Vt−1xt
(3)

and,

Vt = Vt−1 −
Vt−1xtx>t Vt−1

λ+ x>t Vt−1xt
.

Consider the following incremental proxi-
mal method recursion for

ft(θ) =
1

2
(yt − x>t θ)2

which is given by,

θt = proxλ,ft (θt−1),

= argmin
θ

1

2
(yt − x>t θ)2 +

λ

2
‖θ − θt−1‖22,V−1 ,

which results in

θt = θt−1 +
V xt(yt − x>t θt−1)

λ+ x>t V xt
. (4)

In this special case, sequential Bayesian inference corresponds to
the incremental proximal method with a variable metric.
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The Gaussian case
Sequential Bayes as optimization (Akyıldız, Elvira, and Míguez 2018).

I This interpretation can be extended to the nonlinear case, where
one can use extended Kalman updates for nonlinear optimiza-
tion.
I Produces much more numerically stable and robust (e.g. insensi-

tive to initial parameters) behaviour compared to usual schemes.
I Automatic adaptation of the parameters of the algorithm (e.g.,

as a covariance matrix).

I Further work on incremental proximal gradient methods shows
that this is an interesting research direction (Akyildiz et al.
2019).
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argmax
θ∈Θ

πT (θ) = argmin
θ∈Θ

n∑
i=1

fi(θ).

I As we have discussed, the probabilistic interpretation can be
useful to obtain numerically stable and robust optimization
methods.

I We can also use the interpretation to obtain sampling methods
to solve the general problem.

I The recursion,

πt(dθ) = πt−1(dθ)
Gt(θ)∫

ΘGt(θ)πt−1(dθ)

suggests a sequential sampling method.

Next: We are going to develop a sequential Bayesian inference
method based on sampling.
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A sampler for stochastic optimization

We want to develop a sampler to simulate

πt(dθ) = πt−1(dθ)
Gt(θ)∫

ΘGt(θ)πt−1(dθ)
.

The main difficulty is that this is a static problem, which means
samples will degenerate in a couple of iterations.
I A naive sampling method: Given {θ(i)

t−1}Ni=1,

θ
(i)
t ∼

N∑
i=1

w
(i)
t δθ(i)

t−1

(dθ), where w
(i)
t ∝ Gt(θ

(i)
t−1).

I Suffers from sample impoverishment as we do not generate
new samples: we eventually end up with one sample.
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A sampler for stochastic optimization

We need a way to shake the particles, without introducing too
much error.
I Use a jittering kernel (Crisan and Míguez 2014):

κ(dθ|θ′) = (1− εN )δθ′(dθ) + εNτ(dθ|θ′), (5)

to sample new particles θ(i)
t ∼ κ(·|θ(i)

t−1).
I We usually choose εN ≤ 1√

N
.

I τ can be simple, i.e., multivariate Gaussian or multivariate t
distribution.
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A sampler for stochastic optimization

The sampler:
I Sample θ(i)

0 ∼ π0 for i = 1, . . . , N .
I For t ≥ 1:

I Jitter by generating samples

θ̂
(i)
t ∼ κ(dθ|θ(i)

t−1) for i = 1, . . . , N.

I Compute weights,

w
(i)
t =

Gt(θ̂
(i)
t )∑N

i=1Gt(θ̂
(i)
t )

for i = 1, . . . , N.

I Resample by drawing N i.i.d. samples,

θ
(i)
t ∼ π̂Nt (dθ) :=

N∑
i=1

w
(i)
t δ

θ̂
(i)
t

(dθ), i = 1, . . . , N.
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A sampler for stochastic optimization

Given samples, how to identify the maxima?

I Compute a kernel density estimator pNt (θ):

pNt (θ) =
1

N

N∑
i=1

kh(θ − θ(i)
t ).

I Choose the empirical maximum:

θ?,Nt = argmax
i∈{1,...,N}

pNt (θ
(i)
t ).

This is an O(N2) operation.
I Under suitable regularity conditions

lim
N→∞

πt(θ
?,N
t ) = πt(θ

?
t ),

where θ?t ∈ argmaxθ∈Θ πt(θ).
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However...

I The O(N2) cost of the kernel density estimator suggests that
we should not be in a setup where we need very large N .

I With small N , however, this sampler can take very long time
to move to a global minimum.

I Again, with small N , there might be practical problems with
representing multiple modes.

I Idea: Use M independent, parallel samplers with small N and
select the best one to obtain a global estimator with low cost.
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A parallel SMC sampler for stochastic optimization
(Akyildiz, Crisan, and Míguez 2018)

π
(1),N
0 π

(1),N
1 π

(1),N
2

. . . π
(1),N
t

π
(2),N
0 π

(2),N
1 π

(2),N
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. . . π
(2),N
t

...
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...
...

π
(M),N
0 π

(M),N
1 π

(M),N
2

. . . π
(M),N
t

At iteration t, compute the marginal likelihood,

Z
(m),N
1:t = Z

(m),N
1:t−1 × Z

(m),N
t where Z

(m),N
t =

1

N

N∑
i=1

G
(m)
t (θ̂

(i,m)
t ).

for m = 1, . . . ,M .
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I We have presented a general SMC sampler to solve a
stochastic optimization problem.

I We have the following theoretical guarantee for a single
sampler

lim
N→∞

πt(θ
?,N
t ) = πt(θ

?
t ),

where θ?t ∈ argmaxθ∈Θ πt(θ).

Next: Simulations.
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Simulations
Extended Kalman update as nonlinear proximal optimization

In order to compare the proximal methods and extended Kalman
methods for nonlinear regression , we formulate

min
θ∈Rd

f(θ) where f(θ) =

n∑
k=1

fk(θ)

where fk(θ) = (yk − gk(θ))2 with

gk(θ) =
1

1 + exp(−α− β>xk)

where xk ∈ Rd−1 are inputs and θ = (α, β) ∈ Rd. We set d = 21
and run the EKF and an approximate nonlinear incremental proximal
method.
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Simulations
Extended Kalman update as nonlinear proximal optimization
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Figure: Results on fitting a sigmoid function using EKF and approximate
nonlinear IPM. From (a), it can be seen that the approximate nonlinear
IPM proceeds towards the minimum but suffers from instability while the
EKF proceeds in a stable way. From (b)-(c), it can be seen that the entries
of the diagonal and nondiagonal parts of the covariance matrix Vk converge
to zero which is the reason why the EKF does not suffer from instability.
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Simulations
a cost function with multiple global minima

In this experiment, we tackle the problem

min
θ∈R2

f(θ),

where

f(θ) =

n∑
i=1

fi(θ) and fi(θ) = − 1

λ
log

(
4∑

k=1

N (θ;mi,k, R)

)
,

with λ = 10, R = rI with r = 0.2. We choose the means mi,k

randomly, namely mi,k ∼ N (mi,k;mk, σ
2) where,

m1 = [4, 4]>, m2 = [−4,−4]>, m3 = [−4, 4]>, m4 = [4,−4]>,

and σ2 = 0.5. We have n = 1, 000. Note that each fi(θ) models a
mini-batch in this scenario and we choose K = 1 in our algorithm.
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Simulations
a cost function with multiple global minima

I Uniform prior measure π0(θ) = U([−a, a]× [−a, a]) with
a = 50.

I We run M = 100 samplers, each with each N = 50 particles,
yielding a total number of particles MN = 5, 000.

I We choose a Gaussian jittering scheme; specifically, the
jittering kernel is defined as

κ(dθ|θ′) = (1− εN )δθ′(dθ) + εNN (θ; θ′, σ2
j )dθ, (6)

where εN ≤ 1/
√
N and σ2

j = 0.5.
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Simulations
a cost function with multiple global minima

Figure: An illustration of the performance of the proposed algorithm
for a cost function with four global minima. (a) The plot of
πT (θ) ∝ exp(−f(θ)). The blue regions indicate low values. It can
be seen that there are four global maxima. (b) Samples drawn by the
PSMCO at a single time instant. (c) The plot of the samples together
with the actual cost function f(θ).
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Simulations
a nonconvex global optimization problem

In this experiment, we address the problem,

min
θ∈R2

f(θ) :=

n∑
i=1

(yi − gi(θ))2, (7)

where

gi(θ) =
1

1 + exp(−θ1 − θ2xi)
, (8)

with xi ∈ R, fi(θ) = (yi − gi(θ))2 and θ = [θ1, θ2]>. The function
gi is called as the sigmoid function.
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Simulations
a nonconvex global optimization problem

I We have n = 100, 000. We choose M = 25 and
MN = 1, 000, leading to N = 40 particles for every sampler.
The mini-batch size is K = 100.

I The jittering kernel κ is defined in the same way as before,
where the Gaussian pdf has a variance chosen as the ratio of
the dataset size L to the mini-batch size K, i.e., σ2

j = n/K,
which yields a rather large variance σ2

j = 1000.
I We use a Gaussian kernel density with bandwidth h = 1.
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Simulations
a nonconvex global optimization problem

Figure: (a) The cost function and a snapshot of samples from 50th iteration
of PSMCO, PSGD with bad initialization (blue point) and PSGD with
good initialization (black points). (b) The minimization performance of
each algorithm.
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Conclusions:
I We have shown that a probabilistic view of the optimization

problem may help us to define principled new optimization
methods.

I It can also help us to propose new optimizers using inference
methods: a global stochastic zeroth-order optimization scheme
based on sequential Monte Carlo.

I Probabilistic solutions to the optimization problem also enable
us to quantify uncertainty.

Next: Future work for filtering and optimization.
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Future work on stochastic filtering

I As the nudging increases the efficiency of filters significantly, ex-
ploration of the idea within other particles schemes & parameter
estimation methods is a natural direction.

I Understanding why nudging improves performance significantly
in high-dimensional systems.

I A detailed analysis of model misspecification and the described
alternative model.

I Exploration of the nudging in nonlinear Kalman-type filters.
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Future work on stochastic optimization

I Developing new Kalman-based stochastic optimization schemes,
e.g., (Akyildiz et al. 2019).
I Variants of proximal algorithms, which is a very rich family,

can be cast into a probabilistic framework.

I Using other approximate inference methods to solve the proba-
bilistic recursion.
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Thanks!
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Analysis of the nudged particle filter
A result specific to gradient steps

Assumption 2. The gradient of the likelihood is bounded. In partic-
ular, there are constants Gt <∞ such that

‖∇xgt(x)‖2 ≤ Gt <∞ for x ∈ X, t = 1, 2, . . . , T.

Lemma 1. Choose the number of nudged particles, M > 0, and a
sequence of step-sizes, γt > 0, in such a way that sup1≤t≤T γtM ≤√
N for some T < 0. If Assumption 2 holds and ϕ is a Lipschitz test

function, then the error introduced by the batch gradient nudging
step with |It| = M can be bounded as,∥∥∥(ϕ, ξNt )− (ϕ, ξ̃Nt )

∥∥∥
p
≤ LGt√

N
,

where L is the Lipschitz constant of ϕ, for every t = 1, . . . , T .
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Analysis of the nudged particle filter
Convergence using gradient steps

Theorem 2. Let y1:T be an arbitrary but fixed sequence of observa-
tions, with T <∞, and choose a sequence of step sizes γt > 0 and
an integer M such that

sup
1≤t≤T

γtM ≤
√
N.

Let πNt denote the filter approximation obtained with a NuPF with
batch gradient nudging. If Assumptions 1 and 2 are satisfied and
|It| = M , then

‖(ϕ, πNt )− (ϕ, πt)‖p ≤
ct,p‖ϕ‖∞√

N
(9)

for every t = 1, 2, ..., T , any bounded Lipschitz function ϕ, some
constant ct,p <∞ independent of N for any integer p ≥ 1.
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Model inference of a stochastic volatility model

We consider the stochastic volatility model,

x0 ∼ N
(
x0;µ,

σ2
v

1− φ2

)
, (10)

xt|xt−1 ∼ N (xt;µ+ φ(xt−1 − µ), σ2
v), (11)

yt|xt ∼ N (yt; 0, exp(xt)), (12)

where µ ∈ R, σv ∈ R+, and φ ∈ (−1, 1).

I The sequence (xt)1≤t≤T is called as the log-volatility.
I (yt)1≤t≤T are observations, which are log-returns.

Given the historical price sequence s0, . . . , sT , we set,

yt = 100 log(st/st−1), for 1 ≤ t ≤ T.

Given y1:T , we consider inferring the states x1:T and parameters
θ = (µ, σv, φ) jointly using particle Metropolis-Hastings.
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Model inference of a stochastic volatility model
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Model inference of a stochastic volatility model
Nudging the particle Metropolis-Hastings

Particle Metropolis-Hastings (MH) (Andrieu, Doucet, and Holenstein
2010) is an MH method for sampling from the posterior distribution
of parameters of state-space models.
I MH methods simulate a Markov chain from the target distribu-

tion, accepting each proposed sample with a certain acceptance
probability.

I Acceptance probabilities computed using the model.
I Particle MH uses an inner BPF routine to estimate acceptance

probabilities.
We replace the inner BPF with the NuPF.
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Model inference of a stochastic volatility model
Nudging the particle Metropolis-Hastings
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Model inference of a stochastic volatility model
Nudging the particle Metropolis-Hastings
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Simulations - II
Object tracking

The object of interest is following a model,

xt = Axt−1 +BL(xt−1 − xtarget) + vt.

I xt ∈ R4 consists of two position and two velocity variables.
I xtarget is the deterministic, pre-chosen target state.
I The object follows a policy and the policy matrix L ∈ R2×4 is

found by solving the Riccati equation.

The filters, on the other hand, are not informed about the true
model and the policy it follows, they assume,

xt = Axt−1 + vt.
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model and the policy it follows, they assume,

xt = Axt−1 + vt.
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Simulations - II
Object tracking

The observation model,

yt,i = 10 log10

(
P0

‖rt − si‖2
+ η

)
+ wt,i

where
I rt = [x1,t, x2,t]

> and si is the position of the ith sensor,
I wt,i ∼MT (µ,Σ, ν) (Multivariate-t) with µ = 0, Σ = I,
ν = 1.01 (explosive noise!),

I Sensor parameters, we set η = 10−9 and P0 = 1.
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Simulations - II
Object tracking
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Figure: EKF: Extended Kalman filter, APF: Auxiliary PF. N = 500.
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Model inference of a stochastic volatility model
Nudging the nested particle filter

Nested particle filter (Crisan and Miguez 2018) is a method for
joint inference of parameters and states.
I Two layers of particle filters:

I The outer layer is a particle filter on the parameter space.
I The inner layer consists of usual bootstrap PFs on the

state-space.

We replace inner BPFs with NuPFs.
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Model inference of a stochastic volatility model
Nudging the nested particle filter
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Analysis
a basic Lp result

Theorem 1. Under suitable assumptions on Gt, we obtain

∥∥(ϕ, πt)−
(
ϕ, πNt

)∥∥
p
≤ ct,p‖ϕ‖∞√

N

for t = 1, . . . , T and for any p ≥ 1 where ct,p > 0 is a constant
independent of N .

I However, this result is about expectations w.r.t πNt . We want
a result about our maximum estimator!
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Analysis

A kernel density estimator can be written as an expectation.

Let kh be a kernel with bandwidth h, e.g., a Gaussian kernel. We
denote the KDE as

pN,ht (θ) =
1

N

N∑
i=1

kh(θ − θ(i)
t ),

= (kθh, π
N
t ),

where kθh(θ′) = kh(θ − θ′).

Then it is possible to use Theorem 1 to analyze kernel density
estimators.
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Analysis
a uniform convergence result

Theorem 2. Under suitable assumptions on πt and kernel k, choose

h =
⌊
N

1
2(d+1)

⌋−1
(13)

and denote pNt (θ) = ph,Nt (θ) since h = h(N). Then

sup
θ∈Θ
|pNt (θ)− πt(θ)| ≤

U ε⌊
N

1
2(d+1)

⌋1−ε (14)

where U ε ≥ 0 is an almost surely finite random variable and 0 < ε < 1
is a constant, both of which are independent of N and θ. Then

lim
N→∞

sup
θ∈Θ
|pNt (θ)− πt(θ)| = 0 a.s. (15)
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Analysis
convergence to a global maximum of πt

Theorem 3. Let θ?,Nt = argmaxi∈{1,...,N} p
N
t (θ

(i)
t ) be an estimate of

a global maximum of πt. Then, under the assumptions of Theorem 2,

lim
N→∞

pNt (θ?,Nt ) = πt(θ
?
t ) a.s.,

where θ?t ∈ argmaxθ∈Θ πt(θ).
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Analysis of the nudged particle filter – model mismatch

What is a better model?

Let us assume we are given two probabilistic models,M0 andM1.
Given a sequence of observations y1:T , we say that the modelM1

is better thanM0 if,

p(y1:T |M1) ≥ p(y1:T |M0).

For an SSM, say for modelM0 = {π0, τt, gt},

p(y1:T |M0) =

∫
· · ·
∫ T∏

t=1

gytt (xt)τt(dxt|xt−1)π0(dx0). (16)

We empirically observe that

p(y1:T |M1) ≥ p(y1:T |M0)

whereM0 is the original, assumed SSM.
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