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Sequential computation for inference and optimization

Inference: Given a state space model,

zo ~ 70(dzo),
xi|lre—1 ~ me(dze]Tr—1),
yelze ~ ge(yelwe),
we are interested in the stochastic filtering
problem: Estimating m¢(x¢|y1:¢) in high-

dimensional systems and model misspeci-
fication.

OGP -0
OXOREENO

Optimization:
problem

Given an optimization

6* = argmin f(0),
0co

where f(6) = > 7_; fx(0), we are inter-
ested in stochastic optimization by fram-
ing the problem as a sequential inference
problem of a matched probabilistic model.
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Stochastic filtering problem

Motivation and contributions

» Of critical importance in many fields such as geophysics,
object tracking, finance, ecology, aerospace.

» We focus on a class of computational methods called particle
filters to solve this problem.

> Particle filters tend to fail solving this problem when

» State-space models are high-dimensional,
» Transition models 7;(da¢|z,—1) for t > 1 are misspecified.

4/62



Stochastic filtering problem

Motivation and contributions

» Of critical importance in many fields such as geophysics,
object tracking, finance, ecology, aerospace.
» We focus on a class of computational methods called particle
filters to solve this problem.
> Particle filters tend to fail solving this problem when
» State-space models are high-dimensional,
» Transition models 7;(da¢|z,—1) for t > 1 are misspecified.
» Our first main contribution is to introduce a novel particle filter
which aims at tackling these two difficulties, while keeping the
computational tractability of simple particle filters.
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Stochastic optimization problem

Motivation and contributions

» Widely popular methods for training models in machine
learning when the cost function is defined over a very big
number of data points (big-data setting).

» Many algorithms have been proposed, however:

» Most of them have parameters to tune (e.g. a step-size) and
produce unstable behaviour.

» They are mainly empirical, in the sense that, many parameters
do not have intuitive meanings.
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Stochastic optimization problem

Motivation and contributions

» Widely popular methods for training models in machine
learning when the cost function is defined over a very big
number of data points (big-data setting).

» Many algorithms have been proposed, however:

» Most of them have parameters to tune (e.g. a step-size) and
produce unstable behaviour.

» They are mainly empirical, in the sense that, many parameters
do not have intuitive meanings.

» We will show that, for a certain class of problems, we can build
probabilistic models which are matched to the cost function.

» A probabilistic interpretation may provide automatic parameter
tuning with an intuitive meaning (e.g. a covariance matrix).

» As a byproduct, we will obtain a sampling-based probabilistic
optimization method, algorithmically similar to a particle filter.
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Stochastic filtering: Nudged particle filter



State-space models

Figure: The conditional independence structure of a state-space model.

(xt)¢>0: hidden signal process, (y:)¢>1 the observation process.
xo ~ mo(dz), (prior distribution)
x|wi—1 ~ 1(dze|zi—1), (transition model)
yelze ~ ge(ye|xe), (likelihood)
xy € X where X is the state-space. We use: g;(z;) = g¢(ye|xe).
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State-space models

problem definition

We are interested in estimating expectations,

(e.m) = [ eladm(adndon = [ pm(da),

sequentially as new data arrives. This problem is known as the
filtering problem.

O G

Predict Update

Algorithm:

&r(da) = /Trtfl(dxtfl)‘rt(dwdxt—l) i (dwy) = gt(d%)w.
p(ytly1:t—1)
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Bootstrap particle filter

A general algorithm to estimate expectatlons of any test function
©(xy) given y14. Assume we are given {xt 1} for time ¢ — 1.

» Sampling: draw ' _
! ~ r(dagay?)

independently for every i = 1,..., N.
» Weighting: compute

) = g2/ ZN

for every i =1,..., N, where ZN = ZZ 19:(Z (l))
» Resampling: draw independently,

xg)wwtdx Zwté()dx fori=1,...

N, = & = 7 =
sampling weighting resampling

,N.
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Bootstrap particle filter

For any t the estimation of (y,m;) is given by,

N
(v = [ eteamtar = [[oten @0 = 3 3 otel?) = (i),

Theorem. (Del Moral and Miclo 2000) Under suitable assumptions,
one can prove that for bounded test functions

lelloo = SUPgzex ()] < oo,

N celplloc
y ) — » T < —F
||(<:0 t) (QD t )Hp \/N

where ¢; < oo is a constant independent of N.
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Bootstrap particle filter

practical problems

» Bootstrap PF does not perform well when the signal process is
high-dimensional.

A
=
I\
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» Bootstrap PF does not perform well when the signal process is
high-dimensional.
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Bootstrap particle filter

practical problems

@

(o)

Y

» Bootstrap PF does not perform well when the signal process is
high-dimensional.

» Bootstrap PF is not robust to model misspecification.

One remedy is to use general and better proposal distributions.
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General particle filter

A general algorithm to estimate expectations of any test function
¢(we) given Y.
» Generate the initial particle system {xél)}fil by drawing N
times independently from the prior 7.
» Fort>1,
» Sampling: draw
" ~ qu(dae|2$) )
independently for every i = 1,..., N.
» Weighting: compute
i oc gu(@ )@ o) fa (@l 1)
for every i =1,...,N.
» Resampling: draw xﬁl) it =1,..., N from the discrete

distribution ). wt(i)éiu) (dz), independently for i =1, ..., N.
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General particle filter

A general algorithm to estimate expectations of any test function
o(x) given Y.
» Generate the initial particle system {xéi)}fil by drawing N
times independently from the prior 7.
» Fort>1,
» Sampling: draw
) ~ qu(daylal)_y,pe)
independently for every i = 1,..., N.
» Weighting: compute
wi o go(@)m (@ 1) fa (32 we)
foreveryi=1,...,N.
» Resampling: draw 3:51) i1 =1,...,N from the discrete
distribution ). wt(i)éiu) (dz), independently for i = 1,..., N.
Choosing the proposal carefullty can help tackling the problems. But

weight computations can get complicated and costly!
12/62
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» Bootstrap particle filter is a simple and efficient algorithm.
» |t performs poorly in high-dimensional and misspecified
settings.
» Using a general proposal may be helpful.
— It is not easy to choose a good proposal.

To alleviate the problems of the BPF, we propose to use a simple
scheme using the nudging idea.



Nudging

a practical solution to the problem

Nudging is a practical scheme aimed at solving aforementioned
problems, proposed in the data assimilation literature (Van Leeuwen
2009).
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Nudging

a practical solution to the problem

Nudging is a practical scheme aimed at solving aforementioned
problems, proposed in the data assimilation literature (Van Leeuwen
2009).
» |t is usually applied after the sampling step and consists of
moving particles to “good” regions in the state-space.

» In the literature, it is usually (vaguely) defined as pushing
particles towards observations.

» Minimizing some distance function between y; and each a:gi).
» Kalman-like steps

» Moving particles around the state-space defines a complicated
proposal, for which the weight computations are costly.

» However, it can be very efficient with a very low number of
particles!
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Nudging

from a classical particle filtering perspective

» Generate the initial particle system {a:(()i)}fil by drawing V
times independently from the prior 7.

> Fort>1,
» Sampling: draw x( D Tt(dl’t|.’££21) independently for every
i=1,...,N.

> Nudging (a deterministic transformation): a?ii) = (ﬁ;ﬁ”)

» Weighting: compute

wi o go(@)m (@ 1) fa (3 2 we)
foreveryi=1,...,N.
» Resampling: draw x( D= 1,..., N from the discrete

distribution ). w; )(5,@) (dx), |ndependent|y fori=1,..,N.

Sampllng + nudging effectively induces an implicit Markov kernel:
qt(xt ]xt )1,yt) which is not available in closed form and whose

evaluations require heavy computations!
15/62



Nudged particle filter

definition of nudging operator

We aim at developing computationally efficient and well-defined
nudging schemes. We start with formalizing the nudging operator.

Definition 1
A nudging operator " : X — X associated with the likelihood
function g.(xz) is a map such that

if 2/ =al"(z) then gi(z') > gi(x) (1)

for every x,x' € X.
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Nudged particle filter
the algorithm (NuPF) (Akyildiz and Miguez 2017)

» Generate the initial particle system {x(()i)}f\il by drawing N
times independently from the prior mg.
» Fort>1,

>

>

Sampling: draw 55?) ~ Tt(xt|m§i_)1) independently for every
i=1,...,N.

Nudging: choose a set of indices Z, C {1,..., N}, then
compute ;zﬁ“ = aft (E,Ei)) for every i € Z,. Keep :zﬁ“ = :Egi) for
every i € [N\Z;.

Weighting: compute w'” = g,({")/Z for every
i=1,...,N, where Z)N = vazl g(a}ii)).

Resample: draw xf) from 3", wgi)éjgi) (dz) independently for
i=1,..,N.
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Nudged particle filter
the algorithm (NuPF) (Akyildiz and Miguez 2017)

» Generate the initial particle system {x(()i)}f\il by drawing N
times independently from the prior mg.
» Fort>1,

>

>

Sampling: draw j:y) ~ Tt(xt|m§2_)1) independently for every

i=1,...,N.

Nudging: choose a set of indices Z; C {1,..., N}, then

=(1) _ ( O _ 20 o
¢

compute T; ) for every i € Z;. Keep Z,

every i € [N ]\It

Weighting: compute w\” = gt( Y] ZN for every
i=1,...,N, whereZN PO 1g( )y,

Resample: draw xt ) from > wy )5;55” (dz) independently for
i=1,..,N.

We do not correct the effect of nudging!
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Nudged particle filter
the algorithm (NuPF) (Akyildiz and Miguez 2017)

» Generate the initial particle system {x(()i)}f\il by drawing N
times independently from the prior mg.

» Fort>1,
» Sampling: draw j:y) ~ Tt(xt|m§2_)1) independently for every
i=1,...,N.

» Nudging: choose a set of indices Z; C {1,..., N}, then
compute x( )= 70
every i € [N ]\It

> Weighting: compute w!” = gt( /ZN for every
i=1,...,N, whereZN PO 1g( )y,

»> Resample: draw xt ) from > wy )5;55” (dz) independently for
i=1,..,N.

(:E,Ei)) for every i € 7,. Keep z, = :Egi) for

We do not correct the effect of nudging!

Next: what is the operator a}* and how is it implemented?
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Nudging step

» Implementation of nudging step has two crucial parts:

» Choosing particles to be nudged (constructing Z;).
» Pushing particles towards high-likelihood regions.
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probability M /N (independent).
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Nudging step

» Implementation of nudging step has two crucial parts:

» Choosing particles to be nudged (constructing Z;).
» Pushing particles towards high-likelihood regions.

» Choosing particles:
» \We choose a random subset of the index set!
» Choose M = |Z;| particles randomly at once from
[N] = {1,...,N} (batch).
» Choose each particle to be nudged independently with
probability M /N (independent).
» Pushing particles (nudging):
» Gradient step with respect to the likelihood.
» Random search to find a direction that increases the likelihood.
» Model specific nudging.

We will only deal with the gradient step in this talk.
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Nudging step

Gradient nudging step

» Choose Z;.
» For every i € 73,

7 =5 + Va3

where V,g:(x) denotes the vector of partial derivatives of g; with
respect to the state variables, i.e.,

9g¢
8gl7t xl,t
gt
8$2 x2’t
Vgt = * for z; = i e X.
9g¢ €T
Oxq, + da,t
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» \We have seen that performing nudging without correcting at
the weighting step introduces bias and this is a problem.

Next, we answer the questions:
» Does the algorithm still converge? If so, what is the rate?

» Why would it be robust to model misspecification?



Analysis of the nudged particle filter — convergence

A general result

Assumption 1. The likelihood function is positive and bounded, i.e.,

gi(w¢) >0 and || g¢llo = sup [ge(71)| < 00

x€X
fort=1,...,T.
Theorem 1. Let yi.7 be an arbitrary but fixed sequence of obser-

vations, with T < oo, and choose any M < +/N and any map
aft : X — X. If Assumption 1 is satisfied and |Z;| = M, then

) = ()l < Ll Pl @)

foreveryt =1,2,...,T, any ¢ € B(X), any p > 1 and some constant
¢ < oo independent of N.
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Analysis of the nudged particle filter — model mismatch

Nudging as an observation dependent implicit model

We can interpret the NuPF as a BPF for an alternative model.
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Analysis of the nudged particle filter — model mismatch

Nudging as an observation dependent implicit model

We can interpret the NuPF as a BPF for an alternative model.

Let us assume y1.7 to be fixed and construct the alternative
dynamical model M; = {m, 7", g{"}, where

7 (dxg|ze—1) =1 — enr) e (dwe|mi—1) +

- / Bt (2 (A2 7e(dz 1),

where €); = % The kernel 7/* jointly represents the Markov
transition 7 and independent nudging.

Note that this is for deterministic nudging operators. Different
types of nudging can translate into different implicit models.

22/62



Analysis of the nudged particle filter — model mismatch

Nudging as an observation dependent implicit model

In other words, the NuPF = the BPF for the following observation
dependent dynamical model:

xTo ~ T()(dm'),
Telai—y ~ 7 (x| ze—1),

Yele ~ ge(ye|ze)
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Analysis of the nudged particle filter — model mismatch

Nudging as an observation dependent implicit model

In other words, the NuPF = the BPF for the following observation
dependent dynamical model:

xTo ~ T()(dm'),
Telai—y ~ 7 (x| ze—1),

Yele ~ ge(ye|ze)

Dependence of transition kernel to the observation: Transition
kernels are “adapted to the data”.

23/62



» We have shown that the NuPF has the same convergence rate
as the BPF.
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» We have shown that the NuPF has the same convergence rate
as the BPF.

» The NuPF can be interpreted as a BPF for an implicit, observation-
dependent model, which potentially explains its robustness against
model mismatch.

Next: Simulations and experiments.



Simulations - |

Lorenz 63 model

Lorenz 63 model is given by the following three-dimensional
stochastic differential equation,

dry = —s(x1 — x2)ds + dwy,
dzxgy = (rx; — x9 — x123)ds + dws,

dxs = (x1292 — bxs)ds + dws,

where {w;(s)}sc(0,00) for i = 1,2,3 are 1-dimensional independent
Wiener processes and (s,r,b) € R are fixed model parameters.
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Simulations - |

Lorenz 63 model - simulation and generating observations

We use the Euler-Maruyama scheme with T > 0 and obtain the
system of difference equations,
T1p =141 — Ts(T14-1 — T2 1) + VTury
Top = Tos 1+ T(re1s 1 — Tog 1 — 14 1730-1) + VTugy
w30 =T34-1+ T(T14 12241 — brzs 1) + VTusy
where {u; +}ien, @ = 1,2,3 are i.i.d. N(0,1). We assume that we

can only observe the variable z1; every t; = 40 discrete time steps
and contaminated by additive noise:

Yn = koTimt, +0n, n=12,..,

where {v, }nen is a sequence of i.i.d. A(0,1) and the scale
parameter k, is assumed known.
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Simulations - |

Lorenz 63 model - model mismatch

We simulate the system with

(s,r,b) = <10,28, 2) .
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We simulate the system with

(s,r,b) = (10,28, i) .

However, when we run the BPF and the NuPF, we set

8
(s,r,b) = <10,28, 3 + e> ,

where € = 0.75.
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Lorenz 63 model - model mismatch

We simulate the system with

(s,r,b) = (10,28, i) .

However, when we run the BPF and the NuPF, we set

8
(s,r,b) = <10,28, 3 + e> ,
where € = 0.75.

Model uncertainty: Our knowledge about the model is imperfect!
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Simulations - |

Lorenz 63 model

—e— BPF
—e— NuPF

=)

Normalised MSE

=)

-30

10! 102 108 104 10° 250 300 350 400 450 500
Number of Particles Time steps
(a) (b)

Figure: (a) The results obtained with 1,000 Monte Carlo runs for each N €
{10,100, 500, 1K, 5K, 10K, 20K, 50K, 100K }. The dashed lines indicate
1 standard deviation. (b) A sample path from estimation of an unobserved
dimension (second dimension) in a run where N = 500.
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Simulations - |

Lorenz 63 model - BPF simulation

#
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Simulations - |
Lorenz 63 model - NuPF simulation: Watch out for the blue particles!
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Simulations - 1l

Lorenz 96 model
We consider Lorenz 96 model which is defined as follows,
dxi = ((«Ti—i-l — xi_g)ﬂii_l —Z; + F)dS + dwl

where (w;(s))se(0,00) are Wiener processes for i = 1,...,d.

» We set F' = 8 which generates chaotic dynamics.
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Simulations - 1l

Lorenz 96 model
We consider Lorenz 96 model which is defined as follows,
dxi = ((«Ti—i-l — xi_g)ﬂii_l —Z; + F)dS + dwl

where (w;(s))se(0,00) are Wiener processes for i = 1,...,d.
» We set F' = 8 which generates chaotic dynamics.
» Circular structure: x_1 = x4_1, xg = x4, and g1 = 1.

Discretization:

Tip = Tig1 + T((Ti1-1 — Timog—1)Tio14-1 — Tig—1 + F) + VTuiy

where u; ¢ are i.i.d N'(0,1). We observe half of the state variables,
Yk = T(2k—1),ten T Uns

where ts = 10 and (v,)nen are N (0,1) i.id.
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Simulations - 1l

Lorenz 96 model - for fixed dimension d = 40

Normalised MSE

102

108 10

Number of Particles

(@)

Wall-clock times (secs) x NMSE

Y
5 -
- -
. (g
0 - PR
10 -
[ 2 -
[ 8
102
10 102 10° 10* 10
Number of Particles

(b)

Results are obtained with 1024 Monte Carlo runs for each V.
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Simulations - 1l

Lorenz 96 model - for varying dimensions

Normalised MSE

Wall-clock times (secs) x NMSE

dimensions dimensions

(a) (b)

Dimensions d = [10, 40, 100, 1000, 2000, 5000] and N = 500 kept fixed.
We have run the experiments for 1000 Monte Carlo runs.
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Conclusions:
» We have proposed a particle filter which

» can operate under model mismatch and high-dimensional
settings,

» as computationally efficient as the bootstrap particle filter for
most cases,

» has the same convergence rate as the BPF.

Next: Stochastic optimization.



Stochastic optimization as Bayesian inference



Stochastic optimization

We aim at solving optimization problems of the form

mlnf( ) where f(0 Zf’

0cO

where © C R? is the d-dimensional compact search space and n is
very large.

36 /62



Stochastic optimization

We aim at solving optimization problems of the form

mlnf( ) where f(0 Zfz

0cO

where © C R? is the d-dimensional compact search space and n is
very large.

» Widely encountered in statistics, computer science, machine
learning.

» The standard method: Stochastic gradient descent. At
iteration t, sample a mini-batch Z, C {1,...,n}, then take,

0; = Proj@ <9t 1— vaz 0 1 )

i€Lt
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Stochastic optimization

We aim at solving optimization problems of the form

mmf( ) where f(0 Zf,

0cO

where © C R? is the d-dimensional compact search space and 7 is
very large.

» In this work, we develop a probabilistic view of the problem.
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Stochastic optimization

We aim at solving optimization problems of the form

mmf( ) where f(0 Zf,
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Stochastic optimization

We aim at solving optimization problems of the form

mmf( ) where f(0 Zf,

0cO

where © C R? is the d-dimensional compact search space and 7 is
very large.
» In this work, we develop a probabilistic view of the problem.

» This leads to the use of probabilistic methods.

» Advantages:

» Probabilistic methods (such as Kalman or extended Kalman
based algorithms) produce more stable behaviour than
standard optimizers.

» We can use the probabilistic view to utilize standard numerical
methods to solve the problem, e.g., sampling algorithms.
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Stochastic optimization as Bayesian inference

Given a cost function f(0) = >~ | f;(6), assume that we construct a
sequence of non-overlapping subsets (index sets) (Z;)1<¢<7 of [n] =
{1,...,n} where |I,| = K, ,NZ; = 0, and | J, Z; = [n].

Then we construct

- (- 0.

1€Ls

fort=1,...,T.

38/62



Stochastic optimization as Bayesian inference

Given a cost function f(0) = >~ | f;(6), assume that we construct a

sequence of non-overlapping subsets (index sets) (Z;)1<¢<7 of [n] =
{1,...,n} where |I,| = K, ,NZ; = 0, and | J, Z; = [n].

Then we construct

- (- 0.

1€Ls

fort=1,...,T.

The functions (G¢)1<¢<7 are termed potential functions and can be
thought of as likelihoods, defined compactly for mini-batches.
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Stochastic optimization as Bayesian inference

Given a prior measure 7, define the recursion,

) G(9)
Jo Ge(0)m—1(d)

7Tt(d(9) = Trt,l(dH

for1 <t<T.
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Stochastic optimization as Bayesian inference

Given a prior measure 7, define the recursion,

Gi(0)
Jo Ge(0)m—1(d6)

7Tt(d(9) = 7Tt,1(d0

for1 <t<T.

This recursion can be seen as a sequential Bayes update.

The key observation:

d’]TT
d7T0 O( H Gt

Assumption. We assume that the functions G; are bounded.
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Stochastic optimization as Bayesian inference

As a result
dmr
argmax — () = argmin Z fi(0
0O 770 CS(CA—

since

d7rT

. ) x HGt and G(0) = exp Z fi(0) ] .

7T0
1€Ls

Consequently, when 7 is a uniform distribution on compact ©

argmax 77 () = argmin Z fi(0
bco b0
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The Gaussian case
Sequential Bayes as optimization (Akyildiz, Elvira, and Miguez 2018).

Consider the following model, Consider the following incremental proxi-
mal method recursion for

70 (0) = N (660, Vo),

1 T 9)\2
Gi(0) = N(ye; 2/ 0,N), fe(0) = S (ye — 2 0)
then, m¢(0) = N(6; 0+, Vi) where which is given by,
Vie —x] 0 = _
0, = 0,1+ 196t(ytT xy O¢—1) 3) 0 = prox, f, (0:—1),
Atz Vicimg . 1 T2 A 9
= argmin _ (y: — z; 0)° + [0 — etleg V-1
0 2 2 ’
and,
- which results in
Vie Vie
ViV, - 12¢xy Vi

A+ :EtTV},Lrt ' V&?t(yt — m:@tfl)

0 = 0
t t—1 + >\+$tTth

(4)

In this special case, sequential Bayesian inference corresponds to
the incremental proximal method with a variable metric.
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The Gaussian case
Sequential Bayes as optimization (Akyildiz, Elvira, and Miguez 2018).

» This interpretation can be extended to the nonlinear case, where
one can use extended Kalman updates for nonlinear optimiza-
tion.

» Produces much more numerically stable and robust (e.g. insensi-
tive to initial parameters) behaviour compared to usual schemes.

> Automatic adaptation of the parameters of the algorithm (e.g.,
as a covariance matrix).

» Further work on incremental proximal gradient methods shows
that this is an interesting research direction (Akyildiz et al.
2019).
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argmax 7y (0) = argmmz fi(0
e be® T

» As we have discussed, the probabilistic interpretation can be
useful to obtain numerically stable and robust optimization
methods.

> We can also use the interpretation to obtain sampling methods
to solve the general problem.

» The recursion,

Gi(0)
f@ Gt 7Tt71(d9)

(dG) = Tt— 1 dg

suggests a sequential sampling method.

Next: We are going to develop a sequential Bayesian inference
method based on sampling.



A sampler for stochastic optimization

We want to develop a sampler to simulate

Gi(0)
f@ Gt(G)ﬂt,l (d9) '

The main difficulty is that this is a static problem, which means
samples will degenerate in a couple of iterations.

7rt(d0) = Tt—-1 (d9)

» A naive sampling method: Given {9@1}2]\;1
) S (i) (i) (1)
o\ Ngw; Byo (d0), where w;” oc Gy(6;,).

» Suffers from sample impoverishment as we do not generate
new samples: we eventually end up with one sample.
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A sampler for stochastic optimization

We need a way to shake the particles, without introducing too
much error.

» Use a jittering kernel (Crisan and Miguez 2014):
k(dO]0") = (1 — en)dg (dO) + enT(dO|6), (5)

to sample new particles 9( k(- \Gt 1)

> —_
We usually choose ey < \/N'

» 7 can be simple, i.e., multivariate Gaussian or multivariate t
distribution.
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A sampler for stochastic optimization

The sampler:

> Sample Héi) ~myfori=1,...,N.
» Fort>1:
> Jitter by generating samples

ét(i) ~ m(d@\ﬁgi_)l) for 1=1,...

» Compute weights,

» Resample by drawing N i.i.d. samples,

N
0, ~ 71 (d0) =D wVyn (df),  i=1....N.

i=1
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A sampler for stochastic optimization

Given samples, how to identify the maxima?
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A sampler for stochastic optimization

Given samples, how to identify the maxima?

» Compute a kernel density estimator p{¥ (6):

N
1 i
Pl (0) = N;khw—eﬁ ).

» Choose the empirical maximum:

HZ’N = argmax in(Ht(i)).

This is an O(NN?) operation.

» Under suitable regularity conditions

lim m(07Y) = m(67),
N—=oo

where 0} € argmaxycg m(6).
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However...
» The O(N?) cost of the kernel density estimator suggests that
we should not be in a setup where we need very large N.
» With small N, however, this sampler can take very long time
to move to a global minimum.
» Again, with small N, there might be practical problems with
representing multiple modes.

» Idea: Use M independent, parallel samplers with small N and
select the best one to obtain a global estimator with low cost.



A parallel SMC sampler for stochastic optimization
(Akyildiz, Crisan, and Miguez 2018)

AN N N ()N
0 1 2 t
AN L @N L @N L (2N
0 1 2 t
ﬂ(()M),N L W%M) N 7TéM),N L 7Tt(M),N
At iteration ¢, compute the marginal likelihood,
Z{fll)’N = Z(m) Nz \where  ZMN = ZG<m) 68y,

form=1,..., M.
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AN L ON L N ()N
0 1 2 t

AN L @N L @N L (2N
0 1 2 ¢

AMLN L (M),N L (M),N L ] (M)N
0 1 2 t

At iteration ¢, compute the marginal likelihood,
Z{:’,?)’N = Z(m) Nz \where  ZMAN = ZG<m) 68y,

form=1,..., M.

49 /62



A parallel SMC sampler for stochastic optimization
(Akyildiz, Crisan, and Miguez 2018)

0 1 2 t
7.[_(2)1N — 7T(2)7N | 7T(2)7N N — 7r(2)aN
0 1 2 t
7r(()M)7N N 7T§M),N N wéM)’N L 7rt(M):N
At iteration ¢, compute the marginal likelihood,
N
(m),N _ (m),N _ (m),N (m,~ _ 1 (m) (f(i,m)
Ziy =L X 4y where 7, =N ;Gt (07
form =1,..., M. Choose: m; = argmax,,c; Z{?‘N.
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> \We have presented a general SMC sampler to solve a
stochastic optimization problem.



> \We have presented a general SMC sampler to solve a
stochastic optimization problem.

» We have the following theoretical guarantee for a single
sampler

lim m(07Y) = m(6)),
N—o0

where 0} € argmaxgycg m(6).

Next: Simulations.



Simulations

Extended Kalman update as nonlinear proximal optimization

In order to compare the proximal methods and extended Kalman
methods for nonlinear regression , we formulate

min f(0) where f(6) = fi(6)
k=1

OcRd

where f1.(6) = (yx — gi(6))* with

1
1+ exp(—a— BTay)

9k(0)
where 2, € R%! are inputs and = (o, 3) € R%. We set d = 21
and run the EKF and an approximate nonlinear incremental proximal

method.
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Simulations

Extended Kalman update as nonlinear proximal optimization

55 __ _ |-~ Approx. Nonlinear IPM

Diagonal
o
(4]
Nondiagonal

0 s

® 10° 10

terations Iterations Iterations
(@) (b) (©

Figure: Results on fitting a sigmoid function using EKF and approximate
nonlinear IPM. From (a), it can be seen that the approximate nonlinear
IPM proceeds towards the minimum but suffers from instability while the
EKF proceeds in a stable way. From (b)-(c), it can be seen that the entries
of the diagonal and nondiagonal parts of the covariance matrix Vj, converge
to zero which is the reason why the EKF does not suffer from instability.
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Simulations

a cost function with multiple global minima
In this experiment, we tackle the problem

in £(0
min f(6),

4
1
f(0) = Zfi(Q) and  f;(0) = Y log (ZN(G;mi,k,R)> :
i k=1
with A =10, R = rI with r = 0.2. We choose the means m; j,
randomly, namely m; . ~ N (m; x; my, o%) where,
m1 = [474]T7 ma = [_4a _4]T7 m3 = [_474]T7 my = [47 _4]T7

and 02 = 0.5. We have n = 1,000. Note that each f;() models a
mini-batch in this scenario and we choose K = 1 in our algorithm.
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Simulations

a cost function with multiple global minima

» Uniform prior measure 7o(0) = U([—a,a] X [—a,a]) with
a = 50.

» We run M = 100 samplers, each with each N = 50 particles,
yielding a total number of particles M N = 5,000.

> We choose a Gaussian jittering scheme; specifically, the
jittering kernel is defined as

k(d010") = (1 — en)dy (dB) + en N (0;6',05)d6,  (6)

where ey < 1/\/N and 0]2 =0.5.
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Simulations

a cost function with multiple global minima

0
()

Figure: An illustration of the performance of the proposed algorithm
for a cost function with four global minima. (a) The plot of
mr(0) o< exp(—f(6)). The blue regions indicate low values. It can
be seen that there are four global maxima. (b) Samples drawn by the
PSMCO at a single time instant. (c) The plot of the samples together
with the actual cost function f(6).
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Simulations

a nonconvex global optimization problem

In this experiment, we address the problem,

min f(0) = Zl<y — 5i(0))%, (7
where
4:(6) : (®)

T 1+ oxp(—01 — O21;)

with 2; € R, fi(0) = (yi — 9:(0))? and 6 = [01,62] . The function
g is called as the sigmoid function.
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Simulations

a nonconvex global optimization problem

» We have n = 100, 000. We choose M = 25 and
MN = 1,000, leading to N = 40 particles for every sampler.
The mini-batch size is K = 100.

» The jittering kernel k is defined in the same way as before,
where the Gaussian pdf has a variance chosen as the ratio of
the dataset size L to the mini-batch size K, i.e., 0% = n/K,

j
which yields a rather large variance o = 1000.

» We use a Gaussian kernel density with bandwidth h = 1.
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Simulations
a nonconvex global optimization problem

200
—PSMCO
—PSGD with B/I
100 —PSGD with G/I
104 —
(VI
-100 10°
-200
200  -100 0 100 200 100 10! 102 108

@ (o)

Figure: (a) The cost function and a snapshot of samples from 50th iteration
of PSMCO, PSGD with bad initialization (blue point) and PSGD with
good initialization (black points). (b) The minimization performance of

each algorithm.
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Conclusions:

» We have shown that a probabilistic view of the optimization
problem may help us to define principled new optimization
methods.

» |t can also help us to propose new optimizers using inference
methods: a global stochastic zeroth-order optimization scheme
based on sequential Monte Carlo.

» Probabilistic solutions to the optimization problem also enable
us to quantify uncertainty.

Next: Future work for filtering and optimization.



Future

work on stochastic filtering

As the nudging increases the efficiency of filters significantly, ex-
ploration of the idea within other particles schemes & parameter
estimation methods is a natural direction.

Understanding why nudging improves performance significantly
in high-dimensional systems.

A 