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Abstract This paper investigates a link between ma-

trix factorisation algorithms and recursive linear filters.

In particular, we describe a probabilistic model in which

sequential inference naturally leads to a matrix factori-

sation procedure. Using this probabilistic model, we de-

rive a matrix-variate recursive linear filter that can be

run efficiently in high dimensional settings and leads

to the factorisation of the data matrix into a dictio-

nary matrix and a coefficient matrix. The resulting al-

gorithm, referred to as the dictionary filter, is inherently

online and has easy-to-tune parameters. We provide an

extension of the proposed method for the cases where

the dataset of interest is time-varying and nonstation-

ary, thereby showing the adaptability of the proposed

framework to non-standard problem settings. Numeri-

cal results, which are provided for image restoration and
video modelling problems, demonstrate that the pro-

posed method is a viable alternative to existing meth-

ods.
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1 Introduction

Matrix factorisation (MF) algorithms are a cornerstone

of modern signal processing, machine learning, and,

more generally, computational linear algebra. Formally,

we are interested in solving the problem of factorising

a data matrix Y ∈ Rm×n as

Y ≈ CX (1)

where C ∈ Rm×r is the dictionary matrix, the columns

of X ∈ Rr×n are coefficients, and r is the approximation

rank. In this paper we assume all matrices are real-

valued. We are interested in computing both C and

X recursively, or online, using a single (column) data

vector at each time to update the factors.

Matrix factorisation methods became popular with
the work on nonnegative matrix factorisation (NMF)

of [1]. The authors considered the factorisation of a

nonnegative data matrix Y ∈ Rm×n+ into nonnegative

factors C ∈ Rm×r+ and X ∈ Rr×n+ using a multiplica-

tive gradient descent method (see [2] for a convergence

proof). The algorithm has received significant atten-

tion due to its ability to learn important and inter-

pretable features in an unsupervised way. Following [1],

similar algorithms were also proposed for real-valued

matrices and factors, as in our formulation (1), espe-

cially when the primary interest is the prediction of

entries but not necessarily obtaining interpretable fea-

tures. Optimisation-based approaches became popular

in that avenue, i.e., taking a cost function of the form

d(Y,CX) and minimising it with respect to C and X

using optimisation algorithms such as projected gradi-

ent descent for NMF [3] or alternating least-squares for

real MF [4]. There has been a seemingly inexhaustible

research activity in this area and a full literature review

is out of scope for this article.
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Similar to the optimisation based ideas, probabilis-

tic approaches to MF have received considerable at-

tention. Compared to the optimisation based methods

which try to obtain point estimates of the factors, prob-

abilistic methods aim at capturing the posterior distri-

bution over the factors, hence quantifying the uncer-

tainty. In [5], authors introduced a Gaussian model for

real-valued MF to estimate movie ratings where fac-

tors were assumed to have independent and identically

distributed (iid) entries. Similar ideas have been pro-

posed for nonnegative factorisations [6]. Also a proba-

bilistic interpretation of batch NMF was introduced in

[7] deriving multiplicative update rules as a variational

inference scheme.

All these methods were batch techniques, meaning

that they require the whole dataset to update each fac-

tor at each iteration. With the rise of big datasets, these

ideas became infeasible to apply. On the optimisation

side, the research focus increasingly shifted to stochas-

tic optimisation algorithms which enabled implementa-

tions of MF for large datasets. In one of the early works,

NMF has been extended to the incremental setting [8].

A canonical stochastic gradient descent (SGD) based

approach for general MF can be found in [9] which can

be applied entry-wise or column-wise to solve the prob-

lem in (1). Similarly, one can apply the same idea to

any type of differentiable cost, such as regularised ver-

sions of the cost function proposed in [9], and obtain

a MF method. The idea is extended in several ways,

see e.g. [10,11]. One of the fundamental limitations of

these algorithms are their step-size tuning problems, a

problem which has received much attention recently,

see e.g. [12–14]. Every different dataset requires a dif-

ferent step-size and decay rate of the step-size, usually

set after conducting empirical tests.

Compared to stochastic optimisation based works,

online versions of probabilistic MF have received less

attention. The work in [15] followed the probabilistic

interpretation of NMF given in [7] to propose a sequen-

tial Monte Carlo based NMF algorithm. However, this

algorithm was only applied to low dimensional prob-

lems and its applicability to realistic settings remains

unclear. In [16], the same batch NMF model of [7] was

implemented with stochastic variational inference tech-

niques in the online setting.

On the other hand, sequential inference for matrix-

variate linear dynamic models independently received

some interest for different applications, see, e.g. [17,18].

A different perspective, closer to our approach in this

paper, was introduced in [19], where matrix-variate up-

date rules for Hessian matrices were derived as analytic

inference rules in probabilistic models. As a result, the

authors of [19] obtained quasi-Newton algorithms from

a probabilistic perspective. However, this work focuses

on the symmetric matrices whereas in this work, our

main focus is general, nonsquare matrices.

In this paper, we highlight a connection between

online matrix factorisation and sequential probabilis-

tic inference. In doing so, we propose a matrix-variate

dynamic linear probabilistic model in which sequential

approximate inference leads to an online matrix factori-

sation algorithm. More specifically, we derive a matrix-

variate recursive filtering method that can be readily

interpreted as an online MF technique. This probabilis-

tic characterisation brings several advantages. First, since

the proposed method is based on an explicit proba-

bilistic model, it enables the user to naturally incor-

porate further prior knowledge on factors (by extend-

ing the model we put forward) or dealing with non-

stationary data in a principled way by putting dynam-

ics on the dictionary matrix (see Section 3.3). There-

fore, the proposed framework makes it easier to de-

velop application-specific models and inference proce-

dures. Secondly, from a practical perspective, compared

to other online methods, the inference method we pro-

pose removes the need of step-size tuning and involves

only easy-to-tune parameters. Specifically, the proposed

algorithm does not require any step-size parameter. Its

role is played by an r × r covariance matrix that is

updated automatically at each iteration. We note that

this is different (and computationally much cheaper)

than a second-order Hessian-based approach [20], where

the Hessian matrices there would need to be of the

same dimension as the vectorised dictionary matrix,

which is impractical in this case. Finally, as opposed

to the simulation-based probabilistic MFs such as [15,

21], which only obtain samples from the posterior of the

dictionary, the proposed method obtains an analytical

form of the posterior distribution in terms of a Gaus-

sian, which enables the user to quantify the uncertainty

over the dictionary or diagnose convergence.

The rest of the paper is organised as follows. We

introduce the probabilistic model for the factorisation

problem in Section 2. Two online algorithms are de-

rived in Section 3. In Section 4, we compare our algo-

rithm with some popular optimisation based methods.

Some illustrative experimental results on image restora-

tion and video modeling are presented in Section 5 and,

finally, Section 6 is devoted to the conclusions.

2 Probabilistic model

Notation. Throughout the paper, Im denotes the m×
m identity matrix and vec(·) denotes the vectorisation

operation (formally, the matrix-stack operator). Specif-

ically, for an m× r matrix Z, z = vec(Z) is an mr × 1



Dictionary filtering 3

vector constructed by stacking the columns of Z. To

revert this operation, we define the inverse vectorisa-

tion operation (or the inverse matrix-stack operator) as

Z = vec−1m×r(z), where the subscript indicates the di-

mension of Z. Intuitively this operation can be seen as

a reshaping operation. We usually denote vectors with

lower-case letters and matrices with capital letters.

We recall some useful definitions and equalities be-

low. The symbol ⊗ denotes the Kronecker product. In

particular, let A be of dimension m× r and B be of

dimension r × n; then [22],

A⊗B =

a11B · · · a1rB...
. . .

...

am1B · · · amrB

 .
Also, for A,B andX of appropriate dimension, we have,

vec(AXB) = (B> ⊗A)vec(X). (2)

As a particular case, for an r × 1 vector x we have

Ax = vec(Ax) = (x> ⊗ Im)vec(A). (3)

We also draw from properties of the Kronecker product,

namely the mixed product property [22],

(A⊗B)(C ⊗D) = (AC)⊗ (BD), (4)

and the inversion property [22],

(A⊗B)−1 = A−1 ⊗B−1. (5)

We assume an argument-wise notation for probabil-

ity density functions (pdf’s). Given two random vectors

(r.v.’s) x and y, p(x) denotes the pdf of x and p(y) de-

notes the, possibly different, pdf of y. Similarly, p(y|x)

is the conditional density of y given x.

2.1 Model

Recall that Y ∈ Rm×n denotes the data matrix, C ∈
Rm×r is the dictionary matrix, with approximation rank

r, and X ∈ Rr×n is the coefficient matrix. The i-th col-

umn of the data matrix is denoted Y (:, i) and we use

{1, . . . , n} to denote sets of consecutive indices.

Let us consider a random mechanism for the collec-

tion of data vectors. In particular, assume that, at time

k, we sample an index ik from the uniform probability

distribution over the index set {1, . . . , n}, and use it to

select the data vector yk = Y (:, ik) (specifically note

that yk denotes the observation at time k, not the k-th

column of Y ). Similarly, the ik-th column of X is de-

noted xk = X(:, ik). We use c = vec(C) to denote the

vector form of the dictionary, while ck = vec(Ck) de-

notes its estimate at time k. We assume a probabilistic

model linking these factors, namely,

p(c) = N (c; c0, V0 ⊗ Im), (6)

p(yk|c, xk) = N (yk;Cxk, λ⊗ Im), (7)

where p(c) is a prior pdf on the dictionary vector c,

N (z;µ,Σ) denotes the Gaussian pdf of the r.v. z with

mean µ and covariance matrix Σ, V0 is an r×r a priori

covariance matrix (identical for each column of C), c0 is

an mr× 1 mean vector, λ > 0 is a scale parameter and

p(yk|c, xk) is the conditional pdf (assumed Gaussian)

of the data vector yk given the dictionary C and the

coefficient vector xk. The covariance matrix V0 encodes

the prior knowledge of correlations between columns of

C and λ models how informative the observations are

(similar to a regularisation parameter in optimisation

based approaches). In this model, xk is a static un-

known parameter, while c and yk are random vectors.

Intuitively, model (6)–(7) implies that yk ≈ Cxk
(and, hence, Y ≈ CX), where λ controls the magni-

tude of the approximation error. Notice that, using the

identity (3) for Cxk, we can rewrite (7) as

p(yk|c, xk) = N (yk; (x>k ⊗ Im)c, λ⊗ Im) (8)

and we express the model in terms of the vector form of

the dictionary. Treating c as a latent vector with obser-

vation matrix x>k ⊗Im enables us to use standard linear

filtering recursions in vector form. We will show, how-

ever, that working with the matrix form of the dictio-

nary is also possible and leads to a significant reduction

in computational complexity.

3 Algorithm

We assume the coefficient vectors xk are determinis-

tic parameters for which we aim at computing point-

estimates, whereas the dictionary C is a latent random

matrix and we aim at computing its posterior probabil-

ity distribution (given the data in Y ). The two problems

are addressed in this section.

3.1 Parameter estimation

Let us assume that Ck−1 is an estimate of the dictio-

nary matrix computed at time k−1 –by a procedure to

be specified later. We propose to compute a maximum

likelihood estimator of the coefficient vector xk, given

the dictionary Ck−1 and the data yk, namely,

x∗k = argmax
xk

p(yk|ck−1, xk), (9)
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where ck−1 = vec(Ck−1). Since the density in (9) is

Gaussian, with mean Ck−1xk, the estimator can be eas-

ily computed and yields

x∗k = (C>k−1Ck−1)−1C>k−1yk. (10)

We use this update rule for the coefficients in the ex-

periments of Section 5.

3.2 Inference of the dictionary matrix

Let us assume that xk = x∗k is fixed via the rule in

Eq. (10) and drop it from the notation for simplicity.

Model (6)–(8) can then be rewritten as

p(c) = N (c; c0, P0), (11)

p(yk|c) = N (yk;Hkc,R), (12)

where xk = x∗k is implicit, P0 = V0⊗Im and R = λ⊗Im.

The observation matrix for this model takes the form

Hk = x∗,>k ⊗ Im and hence it is assumed known. Given

(11)–(12), the posterior distribution of c given the data

sequence y1:k is Gaussian and can be computed ex-

actly [23]. To be specific, the posterior pdf is Gaus-

sian, p(c|y1:k) = N (c; ck, Pk), with mean ck and covari-

ance matrix Pk, and can be computed exactly using a

Kalman filter, which can be described by the recursive

equations [23]

ck = ck−1 + Pk−1H
>
k (HkPk−1H

>
k +Rk)−1

× (yk −Hkck−1), (13)

Pk = Pk−1 − Pk−1H>k (HkPk−1H
>
k +Rk)−1HkPk−1.

(14)

The algorithm is initialised with c0 and P0 in (11).

Implementing the update rules (13)–(14) is compu-

tationally inefficient, however, when c ∈ Rmr is large

dimensional. They require the storage of a potentially

very large matrices (Hk is m× rm and Pk is rm× rm)

which can easily make the algorithm impractical. To cir-

cumvent this limitation, we propose an equivalent, yet

computationally more efficient, pair of equations for the

update of the dictionary matrix Ck = vec−1m×r(ck) and

the covariance matrix Vk (with dimensions r×r and ini-

tialised with the matrix V0 in (6)). The following two

propositions state the form of the update rules.

Proposition 1 The posterior covariance matrix Pk in

(14) can be written as Pk = Vk ⊗ Im, for k ≥ 0, where

Vk =

(
Vk−1 −

Vk−1xkx
>
k Vk−1

x>k Vk−1xk + λ

)
, for k ≥ 1. (15)

and V0 is given by the prior pdf in (6).

Proof We prove this result by induction. The model

is constructed in such a way that P0 = V0 ⊗ Im and

we assume that Pk−1 = Vk−1 ⊗ Im, with the sequence

{Vl; 1 ≤ l ≤ k − 1} computed as in (15). To obtain

an expression for Vk at time k, we start substituting

Hk = x>k ⊗ Im, R = λ⊗ Im and Pk−1 = Vk−1⊗ Im into

(14), which yields

Pk = (Vk−1 ⊗ Im)− (Vk−1 ⊗ Im)(xk ⊗ Im)

× ((x>k ⊗ Im)(Vk−1 ⊗ Im)(xk ⊗ Im) + λ⊗ Im)−1

× (x>k ⊗ Im)(Vk−1 ⊗ Im).

Applying the mixed product property (4) repeatedly in

the equation above we arrive at

Pk = (Vk−1 ⊗ Im)− (Vk−1xk ⊗ Im)

× ((x>k Vk−1xk + λ)−1 ⊗ Im)(x>k Vk−1 ⊗ Im),

where we also resorted to property (5). Applying the

mixed product property (4) again leads to

Pk =

(
Vk−1 −

Vk−1xkx
>
k Vk−1

x>k Vk−1xk + λ

)
⊗ Im, (16)

where the expression between brackets matches the right-

hand side of (15), hence Pk = Vk ⊗ Im and the proof is

complete. ut

Proposition 2 The posterior mean ck in (13) can be

rewritten, in matrix form, as

Ck = Ck−1 +
(yk − Ck−1xk)x>k V

>
k−1

x>k Vk−1xk + λ
, (17)

where Ck = vec−1m×r(ck) is the posterior expectation of

the dictionary matrix C and the sequence {Vk; k ≥ 0}
is computed as in Proposition 1.

Proof Substituting Pk−1 = Vk−1⊗Im (given by Propo-

sition 1) Hk = x>k ⊗ Im and Rk = λ⊗ Im into (13) we

obtain

ck = ck−1 + (Vk−1 ⊗ Im)(xk ⊗ Im)

×
(
(x>k ⊗ Im)(Vk−1 ⊗ Im)(xk ⊗ Im) + λ⊗ Im

)−1
× (yk − (x>k ⊗ Im)ck−1).

Repeatedly using the mixed product property (4) in the

equation above we arrive at

ck = ck−1 + (Vk−1xk ⊗ Im)
(
(x>k Vk−1xk + λ)⊗ Im

)−1
× (yk − (x>k ⊗ Im)ck−1)

and applying (5), together with the mixed product prop-

erty again, yields

ck = ck−1+

[
Vk−1xk

x>k Vk−1xk + λ
⊗ Im

]
× (yk − (x>k ⊗ Im)ck−1).

(18)
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Algorithm 1 Dictionary Filter
1: Select C0 randomly, choose an initial covariance matrix
V0 > 0, and set k = 1.

2: repeat
3: Pick yk = Y (:, ik) where ik is drawn from the uniform

distribution over the index set {1, . . . , n}.
4: Update the coefficient vector, the dictionary matrix

and the covariance matrix as

xk = (C>k−1Ck−1)−1C>k−1yk

Ck = Ck−1 +
(yk − Ck−1xk)x>k Vk−1

λ+ x>k Vk−1xk

Vk = Vk−1 −
Vk−1xkx>k Vk−1

x>k Vk−1xk + λ
,

respectively.
5: k ← k + 1
6: until convergence

If we now use (3) on the last term of the right-hand side

of (18) we obtain

ck = ck−1 +

[
Vk−1xk

x>k Vk−1xk + λ
⊗ Im

]
(yk − Ck−1xk),

Since (yk − Ck−1xk) and Vk−1xk

x>k Vk−1xk+λ
are vectors, we

can rewrite this expression as,

ck = ck−1 +

[
vec

(
Vk−1xk

x>k Vk−1xk + λ

)
⊗ Im

]
× vec(yk − Ck−1xk), (19)

Finally, applying (3) to the second term of the sum in

the right-hand side of Eq. (19) yields

ck = ck−1 + vec

(
(yk − Ck−1xk)x>k V

>
k−1

x>k Vk−1xk + λ

)
, (20)

Now using inverse vectorisation vec−1m×r(·), we recover

the update rule (17) and conclude the proof. ut

The complete procedure is outlined in Algorithm 1.

We hereafter refer to this method as the dictionary filter

(DF). Note that this procedure has iteration complex-

ity O(mr2 + r3). In high-dimensional scenarios where

mr2 > r3, we have O(mr2).

3.3 Dynamic dictionary filter

When the dataset is a (possibly nonstationary) time

series, such as in video modeling problems, the prior (6)

on the matrix C can be misleading since it assumes that

a single dictionary for all data points can be sufficient.

In these cases, one can allow C to be time-varying –

hence we obtain a state-space model

p(c̃0) = N (c̃0; c0, V0 ⊗ Im), (21)

p(c̃k|c̃k−1) = N (c̃k; c̃k−1, Q⊗ Im), (22)

p(yk|c̃k, xk) = N (yk; C̃kxk, λ⊗ Im), (23)

where Q is a r × r covariance matrix. A simple mod-

ification of Algorithm 1 is sufficient to conduct infer-

ence in this model. Given the mean-covariance estimate

(Ck−1, Vk−1) at time k − 1, one needs to compute the

predictive covariance matrix,

Ṽk = Vk−1 +Q,

and use Ṽk instead of Vk−1 in all substeps within the

step 4 of the Algorithm 1. We refer to this modified ver-

sion as the dynamic dictionary filter. Intuitively, the dy-

namic version allows the algorithm to adapt the dictio-

nary when the contents evolve quickly over time, such

as in a sequence of video frames. We demonstrate how

this property of the dynamic dictionary filter is useful

in highly nonstationary problems.

4 Links with stochastic optimisation

Our algorithm relates to the MF algorithms using stochas-

tic optimisation based approaches. In literature, MF

problems are often formulated as [9],

min
C,X
‖Y − CX‖2F :=

n∑
k=1

‖yk − Cxk‖22.

Let us assume that xk is set as in Algorithm 1 given

each yk. Then, the SGD implementation for estimating

C becomes update rule

Ck = Ck−1 + γk(yk − Ck−1xk)x>k , (24)

where the positive step-size γk must be tuned to achieve

the best convergence rate. In particular, it must satisfy,∑∞
k=1 γk =∞ and

∑∞
k=1 γ

2
k <∞ in order to guarantee

convergence [24]. In practice, it is usually chosen as,

γk = α/kβ where α > 0 and 0.5 < β < 1. The SGDMF

method has iteration complexity O(mr + r3) where it

reduces to O(mr) when mr > r3.

It can be seen that the update rule (24) is related to

the filtering update rule (17). In our algorithm, in con-

trast to SGD, we do not have a step-size parameter γk,

instead we have the gain matrix Vk−1/(λ+x>k Vk−1xk))

which is updated at each iteration with the posterior

column-covariance Vk. Note that, our approach is not

identical to the second-order SGD or the full filtering

recursions, which are equivalent under some assump-

tions [25]. Those approaches would be infeasible for our



6 Ömer Deniz Akyildiz, Joaqúın Mı́guez

Original Images

(a)

Corrupted Images

(b)

Dictionary Filter

(c)

SGDMF

(d)

NMF

(e)

Fig. 1 Comparison of the proposed algorithm (DF) with stochastic gradient descent matrix factorisation (SGDMF), and
nonnegative matrix factorisation (NMF). The NMF method was iterated 1,000 times. (a) Four original images out of the
400-member dataset. (b) Corrupted images. (c) Output of the DF algorithm. (d) Output of the SGDMF algorithm. (e) Output
of the NMF algorithm. The RMSE values attained by the algorithms are 10.26 (DF), 10.13 (NMF) and 10.79 (SGDMF),
starting from an initial RMSE value 70.54.

problem because the full covariance or Hessian matrices

are too big to store and update compared to Vk, which

captures only the posterior column covariance.

It is also possible to relate our algorithm to another

class of stochastic optimisation methods, called incre-

mental proximal methods [26]. A proximal approach to

the same cost function would give the update rule (see

[27] for an explicit derivation),

Ck = Ck−1 +
(yk − Ck−1xk)x>k

λ+ x>k xk

which is a special case of our algorithm, specifically

if one sets Vk−1 = Ir at each iteration. This would

be obviously unjustified from the probabilistic perspec-

tive. The relationship between filters and proximal al-

gorithms is highlighted in [28].

5 Experiments

5.1 Image restoration

We tackle an image restoration problem on the Olivetti

dataset [7]. This dataset consists of 400 face images of

size 64×64. We vectorise each face into a column vector

with dimension m = 4096. Since there are 400 faces,

n = 400. We chose an approximation rank r = 40 and

λ = 2. The factors C0 and X0 are initialised randomly,

without imposing any structure. We choose V0 = Im
for this particular dataset (other choices do not seem

to lead to better performance). It is up to the user to

encode any prior knowledge about the dictionary using

the covariance matrix V0.

We deal with missing data in the images by putting

masks into the model and extending the update rules

for the missing data case. First, the inference step can

be extended easily. We define a mask M for the whole

dataset Y and denote the mask associated with yk as

mk, more precisely mk = M(:, ik) as yk = Y (:, ik). Note

that M is known, i.e., we know the positions of missing

entries. In Algorithm 1, for the update of Ck (inference

step), we simply replace the term (yk−Ck−1xk) bymk�
(yk−Ck−1xk) where� denotes the Hadamard (element-

wise) product. This corresponds to assuming having ob-

servations of form mk�yk with mean mk�(Cxk). Then,

in accordance, we also have to compute the maximum

likelihood parameter estimator x∗k with missing data.

This corresponds to solving the least squares problem,

min
xk

‖mk � (yk − Ck−1xk)‖22 (25)

For this purpose we construct a special mask, Mk =

[mk, . . . ,mk]︸ ︷︷ ︸
r times

. The rationale behind this mask can be

made explicit by observing that,

mk � (yk − Ck−1xk) = mk � yk − (Mk � Ck−1)xk.

Hence solving (25) is equivalent to solving the following

least squares problem

min
xk

‖mk � yk − (Mk � Ck−1)xk‖22

which, in turn, reduces to the solution of a problem of

the form b ≈ Ax with b = mk�yk and A = Mk�Ck−1.

Hence the solution can be found by applying the update

rule (pseudoinverse operation),

x∗k = ((Mk � Ck−1)>(Mk � Ck−1))−1

×(Mk � Ck−1)>(mk � yk),

in Algorithm 1 for xk.

We compare the performance of the DF, SGDMF

[9] and NMF [1] algorithms. NMF can be considered as

a standard benchmark for image restoration, yet we re-

call that it is a batch (non-recursive or offline) method.

SGD is an online procedure, the same as DF. The im-

plementation of SGDMF is similar to ours – the Ck
SGD update followed by the same update rule (10).

The results of applying the three techniques can be

seen in Fig. 1, along with quantitative results (root-

mean squared error (RMSE) values) in the caption. In
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Fig. 2 Values of diagonal and upper triangular entries of
Vk−1/(λ + x>k Vk−1xk). As our update rule can be decom-
posed as the “step-size” and the gradient, we can see these
values as step-sizes. From this perspective, it can be seen that
our algorithm automatically tunes the step-sizes.

order to construct images with missing data, we ran-

domly removed a patch consisting of %25 of all columns

(for all 400 faces)1. The SGDMF and DF algorithms

were passed 10 times over the dataset recursively (i.e.,

with k = 1, . . . , 10n). The sample images show that

the proposed algorithm works well perceptually, and

achieves an RMSE very close to the NMF algorithm

(and better than SGDMF) with a significantly lesser

computational cost.

The behaviour of the entries of the matrix Vk−1/(λ+

x>k Vk−1xk) can be seen from Fig. 2. As we initialised

V0 = Ir, diagonal values can be seen in the upper clus-

ter in the plot which are decreasing from one to zero.

Non-diagonal entries are initialised as zero and took

nonzero values before again converging to zero. The fig-

ure hints that, as the entries go to zero, the algorithm

converges empirically. This provides a natural and au-

tomated step-size tuning procedure in the form of pos-

terior covariance matrix, which frees the user from the

notorious task of step-size tuning. Note that, second-

order optimisation based approaches, or the full filter-

ing approach, would require to store an mr ×mr ma-

trix where mr = 163, 840 in this case, which practically

renders these approaches infeasible since a matrix of

dimension mr×mr is not possible to fit in to the mem-

ory. In contrast, our algorithm only requires to store

r× r matrix where r = 40, which is a lightweight com-

putation, hence it reduces the computational burden

significantly.

1 The relative performance of the three methods remains
similar when we change the percentage of missing data.

5.2 Video modeling

In this experiment, we test our algorithm on a video

modeling task. The aim is to track a sequence low di-

mensional subspaces of the video frames and recon-

struct them successfully. The video is taken from Youtube

8M dataset [29] and it has T = 450 frames with size

360× 640 after preprocessing. We vectorised the video

and obtained a dataset consisting of a 230400×450 ma-

trix. The task is to sequentially process the video frames

and obtain a sequence of dictionaries and coefficients

that result in low reconstruction errors for all frames of

the video. In this experiment, we have used the dynamic

dictionary filter (dynamic DF) algorithm as explained

in Sec. 3.3 with Q = qIr where q = 0.05 and λ = 2. For

comparison, we have implemented SGDMF [9] and the

incremental NMF (INMF) [8]. We have chosen the rank

r = 10 for all algorithms. For SGDMF, we have chosen

a constant step-size 0.1 and for INMF, we have chosen

α = 0.9. The results can be seen from Fig. 3 in terms

of running times and normalized mean squared errors

(NMSE). From the results, it can be concluded that

dynamic DF arises as a favorable dictionary learning

scheme.

6 Conclusions

We have recast the matrix factorisation problem Y ≈
CX as a linear filtering problem and proposed efficient

matrix-variate update rules for the posterior mean and

covariance of the dictionary matrix C. As a result, we

have obtained an online algorithm for matrix factori-

sation that is flexible and computationally efficient. In

particular, we have noted that the proposed method

has O(mr2) complexity which is independent of the

number of data points. We have empirically demon-

strated that the overhead of the DF compared to the

SGDMF, which has O(mr) complexity, is small. We

have also shown that the algorithm is competitive with

the state-of-the-art methods in an image restoration ex-

ample as well as on a video processing example which

demonstrates that the proposed algorithm can success-

fully learn nonstationary and dynamic signals. Unlike

the stochastic gradient based approaches, our algorithm

does not need any parameter tuning. For future work,

we plan to extend this filtering approach to nonlin-

ear and non-Gaussian state space models where the

model structure can be much richer than linear models.

We believe that different methodological and applica-

tion based directions, such as applications to spatio-

temporal time series analysis, can be successfully pur-

sued in the future.
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Fig. 3 The boxplot of NMSEs×run-time for 450 frames of
the video for each frame. It can be seen that dynamic DF at-
tains lower error levels compared to SGDMF and INMF. The
dynamic DF takes 26.7191 seconds to run while SGDMF and
INMF take 23.8624 and 20.7956 seconds respectively. While
our algorithm is slightly slower, it can be seen that it is the
most favorable when combined with the NMSEs.
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