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Abstract

These notes are prepared for Summer School on Bayesian Filtering (SSBF) 2024, com-
plementary to the slides, and contain the proofs.

As explained in the lecture, we will prove L, convergence bounds for perfect Monte Carlo, self-
normalised importance sampling, and bootstrap particle filters. The proofs are known in the
literature, but we extracted them from Akyildiz (2019).

1 Perfect Monte Carlo

Theorem 1 (Perfect Monte Carlo). Let ¢ be a bounded function, i.e.
oo = sup [p(z)| < o0.
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Then, for any N > 1,
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Proof. We rewrite the Lo norm using its definition as,
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Writing explicitly, we have,
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We define S = o(2()) — (¢, 7) and note that E[S®)] = 0 and S*) are independent random
variables. We therefore have,
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since [SO| = |p(z) — (gp,w){ < 2[|¢||so- Therefore, we have,

2] N4jlel%
= N2 9

H(‘Pa”)—(%ﬂ )HQS \/ﬁ )

O

2 Self-Normalised Importance Sampling

Theorem 2 (Self-Normalised Importance Sampling). Assume |[W||o < o0 and ||¢llec < o0.
Then, the L error (i.e., set p = 2) is bounded by
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Proof. First note that
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Then note the following inequalities,
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We take squares of both sides and apply the inequality (a + b)? < 2(a? + b?) to further bound
the rhs,
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We can now take the expectation of both sides,
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Note that, both terms in the right hand side are perfect Monte Carlo estimates of the integrals,
therefore,
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which completes the proof. [

3 Bootstrap Particle Filter

Theorem 3. Assume that the likelihood function is positive and bounded

gi(re) >0  and  |[|gilloc = sup gi(ws) < o0,
T EX

forallt > 1. Let ¢ be a bounded function and w}¥ be particle filter approximations of m;. Then, for
any N > 1,
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where ¢; < oo is a constant independent of N.

Proof. This is an induction based proof. At time ¢ = 0, particle filter just samples from the prior
of the model 7y and by perfect Monte Carlo result, we readily have
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where ¢y = 2. Therefore, as an induction hypothesis, we assume
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Particle filter takes three steps. We need to bound them separately.
1) Prediction/sampling step: Recall the predictive measure

ft(d.ft) = /T(d.fvt‘l’t_l)ﬂ(dl’t_l).

We need to next prove that the predictive approximation
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where :fgi) ~ T(dxt\xﬂl) satisfies the Lo bound
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Let us denote & = 7ymi—1 = [ 7e(day|zi—1)m—1(dae—1). We can write
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We have to now separately bound two terms. For the first term, we introduce the o-algebra

generated by the random variables 2/} and z\'), i = 1,..., N, denoted F; = o(z{), 2\ i =
1,...,N). Since 7Y, is measurable w.r.t. F;_1, we can write
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Next, we define the random variables .S, (@)

= p(7;"”) — (¢, ;) and note that, conditional on

Fi—1, Sf), i =1,...,N are zero-mean and independent. Then, the approximation error of &V
can be written as,
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Using the fact that St(l) are conditionally zero-mean and independent, we can write,
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If we take unconditional expectations on both sides of the equation above, then we arrive at
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where ¢; = 2 is a constant independent of N.



To handle the second term, we define (¢, m;—1) = (¢, wm—1) where @ € B(X) and given by,
p(o) = (p.7) = [ olam(ala)da.
We also write (¢, 7 ;) = (o, iy ;). Since ||@]loo < [|¢]l0, the induction hypothesis leads,
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where ¢;_; is a constant independent of N. Combining (1) and (2) yields,
c o0
(665 = (el < ltHf%H @)

where ¢i; = ¢;—1 + 2 < oo is a constant independent of N.
2) Weighting step: Next, we aim at bounding ||(y, ) — (¢, 7" ) |2 using (3). We have the
weighted random measure,
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The integrals computed with respect to the weighted measure 7;" takes the form,
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On the other hand, using Bayes theorem, integrals with respect to the optimal filter can also be
written in a similar form as,
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Using a similar argument as in the proof of importance sampling
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where (g4, &;) > 0 by assumption. Using Minkowski’s inequality, we can deduce from (6) that
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Noting that we have ||pg¢|s < [|¢]ls|lgt]loc, (3) and (7) together yield,
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is a finite constant independent of .
3) Resampling step: Finally, since the random variables which are used to construct 7" are
sampled i.i.d from 7", the argument for the base case can also be applied here to yield,
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where c3; < oo is a constant independent of N. Combining bounds (8) and (9) to obtain the
final result, with ¢; = ¢+ + ¢3; < o0, concludes the proof. [

(0. 7) = (0, V)|, < 9)

References

Omer Deniz Akyildiz. Sequential and adaptive Bayesian computation for inference and optimiza-
tion. PhD thesis, Universidad Carlos III de Madrid, March 2019. URL http://akyildiz.me/
works/thesis.pdf.


http://akyildiz.me/works/thesis.pdf
http://akyildiz.me/works/thesis.pdf

	Perfect Monte Carlo
	Self-Normalised Importance Sampling
	Bootstrap Particle Filter

