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Abstract

These notes are prepared for Summer School on Bayesian Filtering (SSBF) 2024, com-
plementary to the slides, and contain the proofs.

As explained in the lecture, we will prove L2 convergence bounds for perfect Monte Carlo, self-
normalised importance sampling, and bootstrap particle filters. The proofs are known in the
literature, but we extracted them from Akyildiz (2019).

1 Perfect Monte Carlo

Theorem 1 (Perfect Monte Carlo). Let φ be a bounded function, i.e.

∥φ∥∞ = sup
x∈X

|φ(x)| < ∞.

Then, for any N ≥ 1,

∥(φ, π)− (φ, πN )∥2 ≤
2∥φ∥∞√

N
.

Proof. We rewrite the L2 norm using its definition as,

∥∥(φ, π)− (φ, πN )
∥∥
2
=

∥∥∥∥∥(φ, π)− 1

N

N∑
k=1

φ
(
x(k)

)∥∥∥∥∥
2

= E

∣∣∣∣∣(φ, π)− 1

N

N∑
k=1

φ
(
x(k)

)∣∣∣∣∣
2
1/2

.

Writing explicitly, we have,

E

∣∣∣∣∣(φ, π)− 1

N

N∑
k=1

φ
(
x(k)

)∣∣∣∣∣
2
 =

1

N2
E

∣∣∣∣∣
N∑
i=1

(
φ(x(i))− (φ, π)

)∣∣∣∣∣
2
 .
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We define S(i) = φ(x(i)) − (φ, π) and note that E[S(i)] = 0 and S(i) are independent random
variables. We therefore have,

E

∣∣∣∣∣(φ, π)− 1

N

N∑
k=1

φ
(
x(k)

)∣∣∣∣∣
2
 =

1

N2
E

∣∣∣∣∣
N∑
i=1

S(i)

∣∣∣∣∣
2
 ,

=
1

N2

N∑
i=1

E
[∣∣∣S(i)

∣∣∣2] ≤ N4∥φ∥2∞
N2

,

since
∣∣S(i)

∣∣ = ∣∣φ(x(i))− (φ, π)
∣∣ ≤ 2∥φ∥∞. Therefore, we have,

∥∥(φ, π)− (φ, πN )
∥∥
2
≤ 2∥φ∥∞√

N
,

□

2 Self-Normalised Importance Sampling

Theorem 2 (Self-Normalised Importance Sampling). Assume ∥W∥∞ < ∞ and ∥φ∥∞ < ∞.
Then, the L2 error (i.e., set p = 2) is bounded by

∥(φ, π)− (φ, π̃N )∥2 ≤
c2∥φ∥∞√

N

where

c2 =
2∥W∥∞
(W, q)

.

Proof. First note that

(φ, π) =
(φ, γ)∫
γ(x)dx

=
(φW, q)

(W, q)
.

Then note the following inequalities,

|(φ, π)− (φ, π̃N )| =
∣∣∣∣(φW, q)

(W, q)
− (φW, qN )

(W, qN )

∣∣∣∣
≤

∣∣(φW, q)− (φW, qN )
∣∣

|(W, q)|
+ |(φW, qN )|

∣∣∣∣ 1

(W, q)
− 1

(W, qN )

∣∣∣∣
=

∣∣(φW, q)− (φW, qN )
∣∣

|(W, q)|
+ ∥φ∥∞|(W, qN )|

∣∣∣∣(W, qN )− (W, q)

(W, q)(W, qN )

∣∣∣∣
=

∣∣(φW, q)− (φW, qN )
∣∣

(W, q)
+

∥φ∥∞|(W, qN )− (W, q)|
(W, q)

.

We take squares of both sides and apply the inequality (a + b)2 ≤ 2(a2 + b2) to further bound
the rhs,

|(φ, π)− (φ, π̃N )|2 ≤ 2

∣∣(φW, q)− (φW, qN )
∣∣2

(W, q)2
+ 2

∥φ∥2∞|(W, qN )− (W, q)|2

(W, q)2
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We can now take the expectation of both sides,

E
[(
(φ, π)− (φ, π̃N )

)2] ≤2E
[(
(φW, q)− (φW, qN )

)2]
(W, q)2

+

2∥φ∥2∞E
[(
(W, qN )− (W, q)

)2]
(W, q)2

.

Note that, both terms in the right hand side are perfect Monte Carlo estimates of the integrals,
therefore,

E
[(
(φ, π)− (φ, π̃N )

)2] ≤2∥φW∥2∞
(W, q)2N

+
2∥φ∥2∞∥W∥∞
(W, q)2N

,

≤4∥φ∥2∞∥W∥2∞
(W, q)2N

,

which completes the proof. □

3 Bootstrap Particle Filter

Theorem 3. Assume that the likelihood function is positive and bounded

gt(xt) > 0 and ∥gt∥∞ = sup
xt∈X

gt(xt) < ∞,

for all t ≥ 1. Let φ be a bounded function and πN
t be particle filter approximations of πt. Then, for

any N ≥ 1,

∥(φ, πt)− (φ, πN
t )∥2 ≤

ct∥φ∥∞√
N

.

where ct < ∞ is a constant independent of N .

Proof. This is an induction based proof. At time t = 0, particle filter just samples from the prior
of the model π0 and by perfect Monte Carlo result, we readily have

∥(φ, π0)− (φ, πN
0 )∥2 ≤

c0∥φ∥∞√
N

.

where c0 = 2. Therefore, as an induction hypothesis, we assume

∥(φ, πt−1)− (φ, πN
t−1)∥2 ≤

ct−1∥φ∥∞√
N

.

Particle filter takes three steps. We need to bound them separately.
1) Prediction/sampling step: Recall the predictive measure

ξt(dxt) =

∫
τ(dxt|xt−1)π(dxt−1).

We need to next prove that the predictive approximation

ξNt (dxt) =
1

N

N∑
i=1

δ
x̄
(i)
t
(dxt),
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where x̄
(i)
t ∼ τ(dxt|x(i)t−1) satisfies the L2 bound

∥(φ, ξN )− (φ, ξ)∥2 ≤
c1,t∥φ∥∞√

N
.

Let us denote ξt = τtπt−1 :=
∫
τt(dxt|xt−1)πt−1(dxt−1). We can write

∥(φ, ξNt )− (φ, ξt)∥2 =
∥∥(φ, ξNt )− (φ, τtπt−1)

∥∥
2

≤
∥∥(φ, ξNt )− (φ, τtπ

N
t−1)

∥∥
2

+
∥∥(φ, τtπN

t−1)− (φ, τtπt−1)
∥∥
2
,

where

(φ, τtπ
N
t−1) =

∫
φ(xt)τt(xt|xt−1)dxtπ

N
t−1(dxt−1) =

1

N

N∑
i=1

∫
φ(xt)τ(xt|x(i)t−1)dxt =

1

N

N∑
i=1

(φ, τ
x
(i)
t−1

t ).

We have to now separately bound two terms. For the first term, we introduce the σ-algebra
generated by the random variables x

(i)
0:t and x̄

(i)
1:t, i = 1, . . . , N , denoted Ft = σ(x

(i)
0:t, x̄

(i)
1:t, i =

1, . . . , N). Since πN
t−1 is measurable w.r.t. Ft−1, we can write

E[(φ, ξNt )|Ft−1] =
1

N

N∑
i=1

(φ, τ
x
(i)
t−1

t ) = (φ, τtπ
N
t−1).

Next, we define the random variables S(i)
t = φ(x̄

(i)
t )− (φ, τtπ

N
t−1) and note that, conditional on

Ft−1, S
(i)
t , i = 1, . . . , N are zero-mean and independent. Then, the approximation error of ξNt

can be written as,

E[
∣∣(φ, ξNt )− (φ, τtπ

N
t−1)

∣∣2 |Ft−1] = E

∣∣∣∣∣ 1N
N∑
i=1

S
(i)
t

∣∣∣∣∣
2 ∣∣∣∣∣Ft−1

 .

Using the fact that S(i)
t are conditionally zero-mean and independent, we can write,

E

∣∣∣∣∣ 1N
N∑
i=1

S
(i)
t

∣∣∣∣∣
2 ∣∣∣∣∣Ft−1

 =
1

N2
E

[
N∑
i=1

∣∣∣S(i)
t

∣∣∣2 ∣∣∣∣∣Ft−1

]
,

Moreover, since
∣∣∣S(i)

t

∣∣∣ = ∣∣∣φ(x̄(i)t )− (φ, τtπ
N
t−1)

∣∣∣ ≤ 2∥φ∥∞, we have,

E

∣∣∣∣∣ 1N
N∑
i=1

S
(i)
t

∣∣∣∣∣
2 ∣∣∣∣∣Ft−1

 ≤ 1

N2
N4∥φ∥2∞ =

4∥φ∥2∞
N

.

If we take unconditional expectations on both sides of the equation above, then we arrive at

∥(φ, ξNt )− (φ, τtπ
N
t−1)∥2 ≤

c̃1∥φ∥∞√
N

, (1)

where c̃1 = 2 is a constant independent of N .
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To handle the second term, we define (φ̄, πt−1) = (φ, τtπt−1) where φ̄ ∈ B(X) and given by,

φ̄(x) = (φ, τxt ) =

∫
φ(xt)τt(xt|x)dxt.

We also write (φ̄, πN
t−1) = (φ, τtπ

N
t−1). Since ∥φ̄∥∞ ≤ ∥φ∥∞, the induction hypothesis leads,

∥(φ, τtπN
t−1)− (φ, τtπt−1)∥2 = ∥(φ̄, πN

t−1)− (φ̄, πt−1)∥2

≤ ct−1∥φ∥∞√
N

, (2)

where ct−1 is a constant independent of N . Combining (1) and (2) yields,∥∥(φ, ξNt )− (φ, ξt)
∥∥
2
≤ c1,t∥φ∥∞√

N
(3)

where c1,t = ct−1 + 2 < ∞ is a constant independent of N .
2) Weighting step: Next, we aim at bounding ∥(φ, πt) − (φ, π̃N

t )∥2 using (3). We have the
weighted random measure,

π̃N
t =

N∑
i=1

w
(i)
t δ

x̄
(i)
t

where w
(i)
t =

gt(x̄
(i)
t )∑N

i=1 gt(x̄
(i)
t )

.

The integrals computed with respect to the weighted measure π̃N
t takes the form,

(φ, π̃N
t ) =

(φgt, ξ
N )

(gt, ξNt )
. (4)

On the other hand, using Bayes theorem, integrals with respect to the optimal filter can also be
written in a similar form as,

(φ, πt) =
(φgt, ξt)

(gt, ξt)
. (5)

Using a similar argument as in the proof of importance sampling∣∣(φ, π̃N
t )− (φ, πt)

∣∣ ≤ 1

(gt, ξt)

(
∥φ∥∞

∣∣(gt, ξt)− (gt, ξ
N
t )

∣∣
+
∣∣(φgt, ξt)− (φgt, ξ

N
t )

∣∣) , (6)

where (gt, ξt) > 0 by assumption. Using Minkowski’s inequality, we can deduce from (6) that∥∥(φ, π̃N
t )− (φ, πt)

∥∥
2
≤ 1

(gt, ξt)

(
∥φ∥∞

∥∥(gt, ξt)− (gt, ξ
N
t )

∥∥
2

+
∥∥(φgt, ξt)− (φgt, ξ

N
t )

∥∥
2

)
. (7)

Noting that we have ∥φgt∥∞ ≤ ∥φ∥∞∥gt∥∞, (3) and (7) together yield,∥∥(φ, πt)− (φ, π̃N
t )

∥∥
2
≤ c2,t∥φ∥∞√

N
, (8)

where

c2,t,p =
2∥gt∥∞c1,t
(gt, ξt)

< ∞
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is a finite constant independent of N .
3) Resampling step: Finally, since the random variables which are used to construct πN

t are
sampled i.i.d from π̃N

t , the argument for the base case can also be applied here to yield,

∥∥(φ, π̃N
t )− (φ, πN

t )
∥∥
2
≤ c3,t∥φ∥∞√

N
, (9)

where c3,t < ∞ is a constant independent of N . Combining bounds (8) and (9) to obtain the
final result, with ct = c2,t + c3,t < ∞, concludes the proof. □
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