
Introduction to Bayesian Filtering: Theory &
Methods

O. Deniz Akyildiz

Department of Mathematics, Imperial College London

May 06, 2024

Summer School on Bayesian filtering (SSBF 2024)

https://akyildiz.me/ssbf-2024-intro

State-Space Models and Stochastic Filtering

The Kalman Filter

Monte Carlo methods - an introduction

Particle filters

Smoothing

Background

2

State-space models
problem definition

y1 y2 . . .

x1x0 x2 . . . xt

yt

Figure: The conditional independence structure of a state-space model.

(xt)t∈N+ : hidden signal process, (yt)t∈N+ the observation process.

x0 ∼ π0(dx0), (prior distribution)
xt|xt−1 ∼ τt(dxt|xt−1), (transition model)

yt|xt ∼ gt(yt|xt), (likelihood)

xt ∈ X where X is the state-space. We use: gt(xt) = gt(yt|xt).
3

State-space models
problem definition

We are interested estimating expectations

(ϕ, πt) =

∫
ϕ(xt)π(xt|y1:t)dxt =

∫
ϕ(xt)πt(dxt),

sequentially as new data arrives. This problem is known as the filtering
problem.

y1 y2 . . .

x1x0 x2 . . . xt

yt

4

A simpler problem
Sequential inference

Let us first consider a generic probabilistic setting,

π0(x) and gt(yt|x).

for (yt)t∈N+ a sequence of observations.

We are interested in estimating
expectations,

(ϕ, πt) =

∫
ϕ(x)π(x|y1:t)dx,

y1 y2 · · · yk

x

5

A simpler problem
Sequential inference

Let us first consider a generic probabilistic setting,

π0(x) and gt(yt|x).

for (yt)t∈N+ a sequence of observations. We are interested in estimating
expectations,

(ϕ, πt) =

∫
ϕ(x)π(x|y1:t)dx,

y1 y2 · · · yk

x

5

A simpler problem
Sequential inference

Let us first consider a generic probabilistic setting,

π0(x) and gt(yt|x).

for (yt)t∈N+ a sequence of observations. We are interested in estimating
expectations,

(ϕ, πt) =

∫
ϕ(x)π(x|y1:t)dx,

y1 y2 · · · yk

x

5

A simpler problem
Sequential inference

How would you obtain π(x|y1:t)?

We can use Bayes’ rule iteratively

π(x|y1:t) =
γ(x, y1:t)
p(y1:t)

,

=
gt(yt|x)γ(x, y1:t−1)

p(yt|y1:t−1)p(y1:t−1)
,

=
gt(yt|x)π(x|y1:t−1)

p(yt|y1:t−1)
.

where

p(yt|y1:t−1) =

∫
gt(yt|x)π(x|y1:t−1)dx.

The previous posterior π(x|y1:t−1) is used as the prior for the next step.

6

A simpler problem
Sequential inference

How would you obtain π(x|y1:t)?

We can use Bayes’ rule iteratively

π(x|y1:t) =
γ(x, y1:t)
p(y1:t)

,

=
gt(yt|x)γ(x, y1:t−1)

p(yt|y1:t−1)p(y1:t−1)
,

=
gt(yt|x)π(x|y1:t−1)

p(yt|y1:t−1)
.

where

p(yt|y1:t−1) =

∫
gt(yt|x)π(x|y1:t−1)dx.

The previous posterior π(x|y1:t−1) is used as the prior for the next step.

6

A simpler problem
Sequential inference

How would you obtain π(x|y1:t)?

We can use Bayes’ rule iteratively

π(x|y1:t) =
γ(x, y1:t)
p(y1:t)

,

=
gt(yt|x)γ(x, y1:t−1)

p(yt|y1:t−1)p(y1:t−1)
,

=
gt(yt|x)π(x|y1:t−1)

p(yt|y1:t−1)
.

where

p(yt|y1:t−1) =

∫
gt(yt|x)π(x|y1:t−1)dx.

The previous posterior π(x|y1:t−1) is used as the prior for the next step.
6

A simpler problem
Sequential inference: the Gaussian case

Let us assume that

π0(x) = N (x;µ0,V0),

gt(yt|x) = N (yt;Htx,Rt).

Can we compute π(x|y1:t) analytically?

Lemma 1
We obtain π(x|y1:t) = N (x;µt,Vt) where,

µt = µt−1 + Vt−1H>
t (Rt +HtVt−1H>

t)
−1(yt −Htµt−1),

Vt = Vt−1 − Vt−1H>
t (Rt +HtVt−1H>

t)
−1HtVt−1,

for t ≥ 1.

7

A simpler problem
Sequential inference: the Gaussian case

Let us assume that

π0(x) = N (x;µ0,V0),

gt(yt|x) = N (yt;Htx,Rt).

Can we compute π(x|y1:t) analytically?

Lemma 1
We obtain π(x|y1:t) = N (x;µt,Vt) where,

µt = µt−1 + Vt−1H>
t (Rt +HtVt−1H>

t)
−1(yt −Htµt−1),

Vt = Vt−1 − Vt−1H>
t (Rt +HtVt−1H>

t)
−1HtVt−1,

for t ≥ 1.

7

A simpler problem
Sequential inference: the Gaussian case

Let us assume that

π0(x) = N (x;µ0,V0),

gt(yt|x) = N (yt;Htx,Rt).

Can we compute π(x|y1:t) analytically?

Lemma 1
We obtain π(x|y1:t) = N (x;µt,Vt) where,

µt = µt−1 + Vt−1H>
t (Rt +HtVt−1H>

t)
−1(yt −Htµt−1),

Vt = Vt−1 − Vt−1H>
t (Rt +HtVt−1H>

t)
−1HtVt−1,

for t ≥ 1.

7

Static vs. dynamic setting

Static inference: Given a probability model,

x ∼ π0(dx),
yt |xt ∼ gt(yt |x),

we are interested in static inference: Estimating
π(x|y1:t) sequentially.

y1 y2 · · · yt

x

Dynamic inference: Given a SSM,

x0 ∼ π0(dx0),
xt |xt−1 ∼ τt(dxt |xt−1),

yt |xt ∼ gt(yt |xt),

we are interested in the stochastic filtering prob-
lem: Estimating πt(xt |y1:t).

y1 y2 . . .

x1x0 x2 . . . xt

yt

8

State-space models
Algorithmic principle

We are interested in estimating expectations,

(ϕ, πt) =

∫
ϕ(xt)πt(xt|y1:t)dxt =

∫
ϕ(xt)πt(dxt),

sequentially as new data arrives.

y1 y2 . . .

x1x0 x2 . . . xt

yt

Algorithm:
Predict

ξt(dxt) =
∫

πt−1(dxt−1)τt(dxt |xt−1)

Update

πt(dxt) = ξt(dxt)
gt(yt |xt)

p(yt |y1:t−1)
.

9

State-space models
Algorithmic principle - prediction

Let us look in detail to these steps:

Prediction: Givenπt−1(dxt−1|y1:t−1), wewant to computeπt(dxt|y1:t−1).

πt(dxt|y1:t−1) =

∫
πt−1(dxt−1|y1:t−1)τt(dxt|xt−1).

In terms of densities

πt(xt|y1:t−1) =

∫
πt−1(xt−1|y1:t−1)τt(xt|xt−1)dxt−1.

10

State-space models
Algorithmic principle - prediction

Let us look in detail to these steps:

Prediction: Givenπt−1(dxt−1|y1:t−1), wewant to computeπt(dxt|y1:t−1).

πt(dxt|y1:t−1) =

∫
πt−1(dxt−1|y1:t−1)τt(dxt|xt−1).

In terms of densities

πt(xt|y1:t−1) =

∫
πt−1(xt−1|y1:t−1)τt(xt|xt−1)dxt−1.

10

State-space models
Algorithmic principle - prediction

Let us look in detail to these steps:

Prediction: Givenπt−1(dxt−1|y1:t−1), wewant to computeπt(dxt|y1:t−1).

πt(dxt|y1:t−1) =

∫
πt−1(dxt−1|y1:t−1)τt(dxt|xt−1).

In terms of densities

πt(xt|y1:t−1) =

∫
πt−1(xt−1|y1:t−1)τt(xt|xt−1)dxt−1.

10

State-space models
Algorithmic principle - update

Wehave already seen the update rule, butwemodify this in the dynamic
setting: Our priorwill nowbe the predictive distributionπt(dxt|y1:t−1).

Update: Given πt(dxt|y1:t−1), we want to compute πt(dxt|y1:t).

πt(xt|y1:t) =
γ(xt, y1:t)
p(y1:t)

,

=
gt(yt|xt)πt(xt|y1:t−1)

p(yt|y1:t−1)
.

where

p(yt|y1:t−1) =

∫
gt(yt|xt)πt(xt|y1:t−1)dxt.

11

State-space models
Algorithmic principle - update

Wehave already seen the update rule, butwemodify this in the dynamic
setting: Our priorwill nowbe the predictive distributionπt(dxt|y1:t−1).

Update: Given πt(dxt|y1:t−1), we want to compute πt(dxt|y1:t).

πt(xt|y1:t) =
γ(xt, y1:t)
p(y1:t)

,

=
gt(yt|xt)πt(xt|y1:t−1)

p(yt|y1:t−1)
.

where

p(yt|y1:t−1) =

∫
gt(yt|xt)πt(xt|y1:t−1)dxt.

11

State-space models
Algorithmic principle - update

Wehave already seen the update rule, butwemodify this in the dynamic
setting: Our priorwill nowbe the predictive distributionπt(dxt|y1:t−1).

Update: Given πt(dxt|y1:t−1), we want to compute πt(dxt|y1:t).

πt(xt|y1:t) =
γ(xt, y1:t)
p(y1:t)

,

=
gt(yt|xt)πt(xt|y1:t−1)

p(yt|y1:t−1)
.

where

p(yt|y1:t−1) =

∫
gt(yt|xt)πt(xt|y1:t−1)dxt.

11

State-space models
The Kalman filter: Linear-Gaussian case

Let us assume that

π0(x) = N (x;µ0,V0),

τt(xt|xt−1) = N (xt;Atxt−1,Qt),

gt(yt|xt) = N (yt;Htxt,Rt).

Can we compute π(xt|y1:t) analytically?

12

State-space models
The Kalman filter: Linear-Gaussian case

Let us assume that

π0(x) = N (x;µ0,V0),

τt(xt|xt−1) = N (xt;Atxt−1,Qt),

gt(yt|xt) = N (yt;Htxt,Rt).

Can we compute π(xt|y1:t) analytically?

12

State-space models
The Kalman filter: Linear-Gaussian case

Lemma 2
Given the optimal filter πt−1(xt−1|y1:t−1) = N (xt−1;µt−1,Vt−1) at
time t − 1 the predictive distribution ξt(xt|y1:t−1) is given by

ξt(xt|y1:t−1) = N (xt; µ̃t, Ṽt),

where,

µ̃t = Atµt−1, (1)

Ṽt = AtVt−1A>
t + Qt. (2)

def kalman_predict(mu, V, A, Q):
mu_pred = A @ mu
V_pred = A @ V @ A.T + Q
return mu_pred , V_pred

13

State-space models
The Kalman filter: Linear-Gaussian case

Lemma 3
Finally, given the predictive distribution ξt(xt|y1:t−1), the optimal filter
πt(xt|y1:t) is given by

πt(xt|y1:t−1) = N (xt;µt,Vt),

where,

µt = µ̃t + ṼtH>
t (Rt +HtṼtH>

t)
−1(yt −Htµ̃t), (3)

Vt = Ṽt − ṼtH>
t (Rt +HtṼtH>

t)
−1HtṼt, (4)

using Lemma 1.

14

State-space models
The Kalman filter: Linear-Gaussian case

def kalman_update(mu_pred , V_pred , H, R, y):
S = H @ V_pred @ H.T + R
K = V_pred @ H.T @ np.linalg.inv(S)
mu = mu_pred + K @ (y - H @ mu_pred)
V = V_pred - K @ H @ V_pred
return mu, V

15

State-space models
The Kalman filter: Linear-Gaussian case

Consider the following state-space model

x0 ∼ N (x0; 0, I),
xt|xt−1 ∼ N (xt;Axt−1,Q),

yt|xt ∼ N (yt;Hxt,R).

where

A =


1 0 κ 0
0 1 0 κ
0 0 0.99 0
0 0 0 0.99

 and Q =


κ3

3 0 κ2

2 0

0 κ3

3 0 κ2

2
κ2

2 0 κ 0

0 κ2

2 0 κ


and

H =

(
1 0 0 0
0 1 0 0

)
and R = r

(
1 0
0 1

)
,

with κ small.
16

State-space models
The Kalman filter: Model evidence

Another crucial quantity in Bayesian computation is the model evi-
dence

p(y1:t) =
∫

p(y1:t|x1:t)p(x1:t)dx1:t.

Kalman filter provides this quantity as a byproduct.

17

State-space models
The Kalman filter: Model evidence

Another crucial quantity in Bayesian computation is the model evi-
dence

p(y1:t) =
∫

p(y1:t|x1:t)p(x1:t)dx1:t.

Kalman filter provides this quantity as a byproduct.

17

State-space models
The Kalman filter: Model evidence

Note that

p(y1:t) =
t∏

k=1

p(yk|y1:k−1),

and

p(yk|y1:k−1) =

∫
p(yk|xk)p(xk|y1:k−1)dxk.

18

State-space models
The Kalman filter: Model evidence

Note that Then one has

p(yk|y1:k−1) = N (yk;Hµ̃k,HṼkH> + Rk).

19

State-space models
Kalmanesque filters

What if nonlinearities exist in Gaussian models?

π0(x) = N (x;µ0,V0),

τt(xt|xt−1) = N (xt; at(xt−1),Qt),

gt(yt|xt) = N (yt; ht(xt),Rt).

Can we still do analytical computations?

Yes! We can use the extended Kalman filter (EKF) or the unscented
Kalman filter (UKF).

20

State-space models
Kalmanesque filters

What if nonlinearities exist in Gaussian models?

π0(x) = N (x;µ0,V0),

τt(xt|xt−1) = N (xt; at(xt−1),Qt),

gt(yt|xt) = N (yt; ht(xt),Rt).

Can we still do analytical computations?

Yes! We can use the extended Kalman filter (EKF) or the unscented
Kalman filter (UKF).

20

State-space models
Kalmanesque filters - EKF

Assume that we are given the SSM

π0(x0) = N (x0;µ0,V0),

τt(xt|xt−1) = N (xt; at(xt−1),Qt)

gt(yt|xt) = N (yt; ht(xt),Rt).

where at : X → X, ht : X → Y,Qt ∈ Rdx×dx , and Rt ∈ Rdy×dy . Assume
that the approximate posterior distribution at time t−1 isπE

t−1(xt−1) =
N (xt−1;µ

E
t−1,VE

t−1).

21

State-space models
Kalmanesque filters - EKF

If the model is approximately locally linear, one can linearize at(xt)
around µE

t−1 and obtain the dynamical model

āt(xt) = at(µE
t−1) + At(xt − µE

t−1) = at(µE
t−1) + Atxt − Atµ

E
t−1,

(5)

where

At =
∂at(x)
∂x

∣∣∣∣
x=µE

t−1

.

We can see (5) as a linear model with control inputs. Hence, the pre-
diction step with this linearized model simply becomes

µ̃E
t = at(µE

t−1).

22

State-space models
Kalmanesque filters - EKF

The uncertainty is propagated also as in the KF, since (5) is a linear
model, hence we obtain

ṼE
t = AtVE

t−1A
>
t + Qt.

Similarly, given µ̃E
t , in order to proceed with the observation model we

can linearize ht around µ̃E
t , i.e., we construct

h̄t(xt) = ht(µ̃E
t) +Ht(xt − µ̃E

t),

where

Ht =
∂ht(x)
∂x

∣∣∣∣
x=µ̃t

.

Given the linearization, the EKF update step now becomes

µE
t = µ̃E

t−1 + ṼE
t H

>
t (Rt +HtṼE

t H
>
t)

−1(yt − ht(µ̃E
t)),

VE
t = ṼE

t − ṼE
t H

>
t (Rt +HtṼE

t H
>
t)

−1HtṼE
t .

23

State-space models
Kalmanesque filters - EKF

Finally, one can compactly summarize the EKF as follows. GivenπE
t−1(xt−1) =

N (xt−1;µ
E
t−1,VE

t−1), the new posterior pdf πE
t (xt) = N (xt;µE

t ,VE
t) is

obtained via

µ̃E
t = at(µE

t−1), (6)

ṼE
t = AtVE

t−1A
>
t + Qt, (7)

µE
t = µ̃E

t−1 + ṼE
t H

>
t (Rt +HtṼE

t H
>
t)

−1(yt − ht(µ̃E
t)), (8)

VE
t = ṼE

t − ṼE
t H

>
t (Rt +HtṼE

t H
>
t)

−1HtṼE
t . (9)

24

State-space models
Kalmanesque filters

Other kinds of Gaussian approximations are very popular:
I UnscentedKalmanfilter (UKF):TheUKFuses a deterministic sam-

pling technique called the unscented transform to obtain a Gaus-
sian approximation of the posterior distribution.

I Gaussian sum filter (GSF): The GSF uses a Gaussian mixture ap-
proximation of the posterior distribution.

I ensemble Kalman filter (EnKF): The EnKF uses a Monte Carlo ap-
proximation of the posterior distribution.

Many other variants, very popular in fields like robotics, navigation,
guidance, aerospace, finance, vision, etc.

A great reference on all things practical about filtering: Särkkä (2013):
Bayesian Filtering and Smoothing.

25

State-space models
Kalmanesque filters

Other kinds of Gaussian approximations are very popular:
I UnscentedKalmanfilter (UKF):TheUKFuses a deterministic sam-

pling technique called the unscented transform to obtain a Gaus-
sian approximation of the posterior distribution.

I Gaussian sum filter (GSF): The GSF uses a Gaussian mixture ap-
proximation of the posterior distribution.

I ensemble Kalman filter (EnKF): The EnKF uses a Monte Carlo ap-
proximation of the posterior distribution.

Many other variants, very popular in fields like robotics, navigation,
guidance, aerospace, finance, vision, etc.

A great reference on all things practical about filtering: Särkkä (2013):
Bayesian Filtering and Smoothing.

25

State-space models
Kalmanesque filters

Other kinds of Gaussian approximations are very popular:
I UnscentedKalmanfilter (UKF):TheUKFuses a deterministic sam-

pling technique called the unscented transform to obtain a Gaus-
sian approximation of the posterior distribution.

I Gaussian sum filter (GSF): The GSF uses a Gaussian mixture ap-
proximation of the posterior distribution.

I ensemble Kalman filter (EnKF): The EnKF uses a Monte Carlo ap-
proximation of the posterior distribution.

Many other variants, very popular in fields like robotics, navigation,
guidance, aerospace, finance, vision, etc.

A great reference on all things practical about filtering: Särkkä (2013):
Bayesian Filtering and Smoothing.

25

State-space models
Kalmanesque filters

Other kinds of Gaussian approximations are very popular:
I UnscentedKalmanfilter (UKF):TheUKFuses a deterministic sam-

pling technique called the unscented transform to obtain a Gaus-
sian approximation of the posterior distribution.

I Gaussian sum filter (GSF): The GSF uses a Gaussian mixture ap-
proximation of the posterior distribution.

I ensemble Kalman filter (EnKF): The EnKF uses a Monte Carlo ap-
proximation of the posterior distribution.

Many other variants, very popular in fields like robotics, navigation,
guidance, aerospace, finance, vision, etc.

A great reference on all things practical about filtering: Särkkä (2013):
Bayesian Filtering and Smoothing.

25

State-space models
Kalmanesque filters

Other kinds of Gaussian approximations are very popular:
I UnscentedKalmanfilter (UKF):TheUKFuses a deterministic sam-

pling technique called the unscented transform to obtain a Gaus-
sian approximation of the posterior distribution.

I Gaussian sum filter (GSF): The GSF uses a Gaussian mixture ap-
proximation of the posterior distribution.

I ensemble Kalman filter (EnKF): The EnKF uses a Monte Carlo ap-
proximation of the posterior distribution.

Many other variants, very popular in fields like robotics, navigation,
guidance, aerospace, finance, vision, etc.

A great reference on all things practical about filtering: Särkkä (2013):
Bayesian Filtering and Smoothing.

25

Deterministic approximations are only useful in certain settings where
we can ensure
I Exact or approximate linearity
I Gaussianity

For more general cases, one option is to use Monte Carlo methods.

Next: A general Monte Carlo approach to estimate expectations w.r.t.
posterior distributions πN

t (dxt|y1:t).

26

Deterministic approximations are only useful in certain settings where
we can ensure
I Exact or approximate linearity
I Gaussianity

For more general cases, one option is to use Monte Carlo methods.

Next: A general Monte Carlo approach to estimate expectations w.r.t.
posterior distributions πN

t (dxt|y1:t).

26

Deterministic approximations are only useful in certain settings where
we can ensure
I Exact or approximate linearity
I Gaussianity

For more general cases, one option is to use Monte Carlo methods.

Next: A general Monte Carlo approach to estimate expectations w.r.t.
posterior distributions πN

t (dxt|y1:t).

26

Perfect Monte Carlo
An introduction

Consider a target measure π(x)dx and a function ϕ(x). If we have ac-
cess to i.i.d samples from Xi ∼ π(x), then

(ϕ, π) :=

∫
ϕ(x)π(x)dx ≈ 1

N

N∑
i=1

ϕ(Xi),

using a particle approximation

πN(dx) =
1

N

N∑
i=1

δXi(dx),

since by definition of the Dirac measure, we have

ϕ(y) =
∫

ϕ(x)δy(dx).

27

Perfect Monte Carlo
An L2 result

Theorem 1 (Perfect Monte Carlo)
Let ϕ be a bounded function. Then, for any N ≥ 1,

‖(ϕ, π)− (ϕ, πN)‖2 ≤
2‖ϕ‖∞√

N
.

28

Importance Sampling
Monte Carlo integration

Typically, we do not have access to i.i.d samples from π.

A well-known approach to compute expectations (ϕ, π) is called im-
portance sampling.

Assume, π is absolutely continuous w.r.t. q, denoted as π � q, meaning
π(x) = 0 =⇒ q(x) = 0.

Then, we can write

(ϕ, π) =

∫
ϕ(x)π(dx) =

∫
ϕ(x)

dπ
dq

(x)q(x)dx.

When π and q admit densities,

(ϕ, π) =

∫
ϕ(x)π(x)dx =

∫
ϕ(x)

π(x)
q(x)

q(x)dx.

29

Importance Sampling
Monte Carlo integration

Typically, we do not have access to i.i.d samples from π.

A well-known approach to compute expectations (ϕ, π) is called im-
portance sampling.

Assume, π is absolutely continuous w.r.t. q, denoted as π � q, meaning
π(x) = 0 =⇒ q(x) = 0.

Then, we can write

(ϕ, π) =

∫
ϕ(x)π(dx) =

∫
ϕ(x)

dπ
dq

(x)q(x)dx.

When π and q admit densities,

(ϕ, π) =

∫
ϕ(x)π(x)dx =

∫
ϕ(x)

π(x)
q(x)

q(x)dx.

29

Importance Sampling
Monte Carlo integration

Typically, we do not have access to i.i.d samples from π.

A well-known approach to compute expectations (ϕ, π) is called im-
portance sampling.

Assume, π is absolutely continuous w.r.t. q, denoted as π � q, meaning
π(x) = 0 =⇒ q(x) = 0.

Then, we can write

(ϕ, π) =

∫
ϕ(x)π(dx) =

∫
ϕ(x)

dπ
dq

(x)q(x)dx.

When π and q admit densities,

(ϕ, π) =

∫
ϕ(x)π(x)dx =

∫
ϕ(x)

π(x)
q(x)

q(x)dx.

29

Importance Sampling
Monte Carlo integration

Typically, we do not have access to i.i.d samples from π.

A well-known approach to compute expectations (ϕ, π) is called im-
portance sampling.

Assume, π is absolutely continuous w.r.t. q, denoted as π � q, meaning
π(x) = 0 =⇒ q(x) = 0.

Then, we can write

(ϕ, π) =

∫
ϕ(x)π(dx) =

∫
ϕ(x)

dπ
dq

(x)q(x)dx.

When π and q admit densities,

(ϕ, π) =

∫
ϕ(x)π(x)dx =

∫
ϕ(x)

π(x)
q(x)

q(x)dx.

29

Importance Sampling
Monte Carlo integration

Given

(ϕ, π) =

∫
ϕ(x)

π(x)
q(x)

q(x)dx,

we can employ standard Monte Carlo by sampling Xi ∼ q and then
constructing (by setting w = π/q)

(ϕ, π̃N) =
1

N

N∑
i=1

ϕ(Xi)w(Xi),

=
1

N

N∑
i=1

wiϕ(Xi).

where wi = w(Xi). We will call this estimator the importance sampling
(IS) estimator.

30

Importance Sampling
Monte Carlo integration

Mini-quiz: Is this estimator unbiased?

Yes.

Eq[(ϕ, π̃
N)] = Eq

[
1

N

N∑
i=1

wiϕ(Xi)

]
,

=
1

N

N∑
i=1

Eq

[
π(Xi)

q(Xi)
ϕ(Xi)

]

=
1

N

N∑
i=1

∫
π(x)
q(x)

ϕ(x)q(x)dx

=

∫
ϕ(x)π(x)dx = (ϕ, π).

31

Importance Sampling
Monte Carlo integration

Mini-quiz: Is this estimator unbiased?

Yes.

Eq[(ϕ, π̃
N)] = Eq

[
1

N

N∑
i=1

wiϕ(Xi)

]
,

=
1

N

N∑
i=1

Eq

[
π(Xi)

q(Xi)
ϕ(Xi)

]

=
1

N

N∑
i=1

∫
π(x)
q(x)

ϕ(x)q(x)dx

=

∫
ϕ(x)π(x)dx = (ϕ, π).

31

Importance Sampling
Monte Carlo integration

What is the variance?

varq[(ϕ, π̃N)] = varq

[
1

N

N∑
i=1

wiϕ(Xi)

]

=
1

N2
varq

[N∑
i=1

w(Xi)ϕ(Xi)

]

=
1

N
varq [w(X)ϕ(X)] where X ∼ q(x)

=
1

N

(
Eq
[
w2(X)ϕ2(X)

]
− Eq [w(X)ϕ(X)]2

)
=

1

N
(
Eq
[
w2(X)ϕ2(X)

]
− ϕ̄2

)
.

32

Importance Sampling
Self-normalised IS

What if we only have access to γ(x) ∝ π(x)?

Assume γ � q and both abs. cont w.r.t. to the Lebesguemeasure. Then
we can write

(ϕ, π) =

∫
ϕ(x)π(x)dx

=

∫
ϕ(x)γ(x)q(x) q(x)dx∫ γ(x)

q(x) q(x)dx
.

We can then perform the same Monte Carlo integration idea but now
both for the numerator and denominator.

33

Importance Sampling
Self-normalised IS

What if we only have access to γ(x) ∝ π(x)?

Assume γ � q and both abs. cont w.r.t. to the Lebesguemeasure. Then
we can write

(ϕ, π) =

∫
ϕ(x)π(x)dx

=

∫
ϕ(x)γ(x)q(x) q(x)dx∫ γ(x)

q(x) q(x)dx
.

We can then perform the same Monte Carlo integration idea but now
both for the numerator and denominator.

33

Importance Sampling
Self-normalised IS (SNIS)

We have

(ϕ, π) =

∫
ϕ(x)π(x)dx

=

∫
ϕ(x)γ(x)q(x) q(x)dx∫ γ(x)

q(x) q(x)dx
.

Define W(x) = γ(x)/q(x) and the SNIS approximation is given as

(ϕ, π) =

∫
ϕ(x)W(x)q(x)dx∫
W(x)q(x)dx

≈
1
N
∑N

i=1 ϕ(Xi)W(Xi)
1
N
∑N

i=j W(Xj)
.

where Xi ∼ q(x). Let us write Wi = W(Xi) and wi = Wi/
∑N

j=1 Wj.
Then the final estimator is

(ϕ, π̃N) =

N∑
i=1

wiϕ(Xi)

34

Importance Sampling
Self-normalised IS (SNIS)

Mini-quiz: Is this estimator unbiased?

No.

The estimator is a ratio of two unbiased estimators. However, this ratio
is not unbiased.

35

Importance Sampling
Self-normalised IS (SNIS)

Mini-quiz: Is this estimator unbiased?

No.

The estimator is a ratio of two unbiased estimators. However, this ratio
is not unbiased.

35

Importance Sampling
Self-normalised IS (SNIS)

Mini-quiz: Is this estimator unbiased?

No.

The estimator is a ratio of two unbiased estimators. However, this ratio
is not unbiased.

35

Importance Sampling
Self-normalised IS (SNIS)

However, one can prove that

‖(ϕ, π)− (ϕ, π̃N)‖p ≤
c̃p‖ϕ‖∞√

N
,

where c̃p is a constant depending on p and q and ϕ is bounded.

36

Importance Sampling
Self-normalised IS (SNIS)

Theorem 2
Assume ‖W‖∞ < ∞. The L2 error (i.e., set p = 2) is bounded by

‖(ϕ, π)− (ϕ, π̃N)‖2 ≤
c2‖ϕ‖∞√

N

where

c2 =
4‖W‖∞
(W, q)

.

37

Particle filters
An introduction

y1 y2 . . .

x1x0 x2 . . . xt

yt

Figure: The conditional independence structure of a state-space model.

(xt)t∈N+ : hidden signal process, (yt)t∈N+ the observation process.

x0 ∼ π0(dx0), (prior distribution)
xt|xt−1 ∼ τt(dxt|xt−1), (transition model)

yt|xt ∼ gt(yt|xt), (likelihood)

xt ∈ X where X is the state-space. We use: gt(xt) = gt(yt|xt).
38

Particle filters
An introduction

Before we go into the details of the derivation, let us directly look at the
algorithm.

I Sampling: draw
x̄(i)t ∼ τt(dxt|x(i)t−1)

independently for every i = 1, . . . ,N .
I Weighting: compute

w(i)
t = gt(x̄

(i)
t)/Z̄N

t

for every i = 1, . . . ,N , where Z̄N
t =

∑N
i=1 gt(x̄

(i)
t).

I Resampling: draw independently,

x(i)t ∼ π̃t(dx) :=
∑
i
w(i)
t δx̄(i)t

(dx) for i = 1, ...,N.

πN
t−1 →︸︷︷︸

sampling

ξNt →︸︷︷︸
weighting

π̃N
t →︸︷︷︸

resampling

πN
t .

39

Particle filters
An introduction

Before we go into the details of the derivation, let us directly look at the
algorithm.
I Sampling: draw

x̄(i)t ∼ τt(dxt|x(i)t−1)

independently for every i = 1, . . . ,N .
I Weighting: compute

w(i)
t = gt(x̄

(i)
t)/Z̄N

t

for every i = 1, . . . ,N , where Z̄N
t =

∑N
i=1 gt(x̄

(i)
t).

I Resampling: draw independently,

x(i)t ∼ π̃t(dx) :=
∑
i
w(i)
t δx̄(i)t

(dx) for i = 1, ...,N.

πN
t−1 →︸︷︷︸

sampling

ξNt →︸︷︷︸
weighting

π̃N
t →︸︷︷︸

resampling

πN
t .

39

Particle filters
Derivation

Where does the algorithm come from?

Surprisingly, we will not use the prediction-update recursions directly
unlike in the Kalman filter.

We will instead develop an importance sampler on the path space.

40

Particle filters
Derivation

Where does the algorithm come from?

Surprisingly, we will not use the prediction-update recursions directly
unlike in the Kalman filter.

We will instead develop an importance sampler on the path space.

40

Particle filters
Derivation

Where does the algorithm come from?

Surprisingly, we will not use the prediction-update recursions directly
unlike in the Kalman filter.

We will instead develop an importance sampler on the path space.

40

Particle filters
Derivation

The key recursion on the path distributions:

πt(x0:t|y1:t) =
γ(x0:t, y1:t)
p(y1:t)

=
γ(x0:t−1, y1:t−1)

p(y1:t−1)

τ(xt|xt−1)g(yt|xt)
p(yt|y1:t−1)

= πt(x0:t−1|y1:t−1)
τ(xt|xt−1)g(yt|xt)

p(yt|y1:t−1)
.

41

Particle filters
Derivation

Let us denote the proposal over the entire path space with q(x0:t|y1:t).
Note the “unnormalised target”

γ(x0:t, y1:t) = µ(x0)
t∏

k=1

τ(xk|xk−1)g(yk|xk). (10)

This simply the joint distribution of all variables (x0:t, y1:t). Just as in
the regular importance sampling

W0:t(x0:t) =
γ(x0:t, y1:t)
q(x0:t|y1:t)

.

Obviously, given samples from the proposal x(i)0:t ∼ q(x0:t|y1:t), by eval-
uating the weight W(i)

0:t = W0:t(x
(i)
0:t) for i = 1, . . . ,N and building a

particle approximation, we can get

πN(dx0:t) =
N∑
i=1

W(i)
0:tδx(i)0:t

(dx0:t).

42

Particle filters
Derivation

Let us denote the proposal over the entire path space with q(x0:t|y1:t).
Note the “unnormalised target”

γ(x0:t, y1:t) = µ(x0)
t∏

k=1

τ(xk|xk−1)g(yk|xk). (10)

This simply the joint distribution of all variables (x0:t, y1:t). Just as in
the regular importance sampling

W0:t(x0:t) =
γ(x0:t, y1:t)
q(x0:t|y1:t)

.

Obviously, given samples from the proposal x(i)0:t ∼ q(x0:t|y1:t), by eval-
uating the weight W(i)

0:t = W0:t(x
(i)
0:t) for i = 1, . . . ,N and building a

particle approximation, we can get

πN(dx0:t) =
N∑
i=1

W(i)
0:tδx(i)0:t

(dx0:t).

42

Particle filters
Derivation - sequential approach

Let us consider the decomposition of the proposal

q(x0:t) = q(x0)
t∏

k=1

q(xk|x0:k−1, y1:k).

Note that, based on this, we canbuild a recursion for the functionW(x0:t)
by writing

W0:t(x0:t) =
γ(x0:t, y1:t)
q(x0:t)

,

=
γ(x0:t−1, y1:t−1)

q(x0:t−1|y1:t−1)

τ(xt|xt−1)g(yt|xt)
q(xt|x0:t−1, y1:t)

,

= W0:t−1(x0:t−1)
τ(xt|xt−1)g(yt|xt)
q(xt|x0:t−1, y1:t)

,

= W0:t−1(x0:t−1)Wt(x0:t). (11)

43

Particle filters
Derivation - sequential approach

This is still not optimal, as we still need to store the whole path.

We can further simplify our proposal by assuming a Markov structure.

q(x0:t) = q(x0)
t∏

k=1

q(xk|xk−1).

This allows us to obtain purely recursive weight computation

W0:t(x0:t) =
γ(x0:t, y1:t)
q(x0:t)

, (12)

=
γ(x0:t−1, y1:t−1)

q(x0:t−1)

τ(xt|xt−1)g(yt|xt)
q(xt|xt−1)

, (13)

= W0:t−1(x0:t−1)
τ(xt|xt−1)g(yt|xt)

q(xt|xt−1)
, (14)

= W0:t−1(x0:t−1)Wt(xt, xt−1), (15)

44

Particle filters
Derivation - sequential approach

This is still not optimal, as we still need to store the whole path.

We can further simplify our proposal by assuming a Markov structure.

q(x0:t) = q(x0)
t∏

k=1

q(xk|xk−1).

This allows us to obtain purely recursive weight computation

W0:t(x0:t) =
γ(x0:t, y1:t)
q(x0:t)

, (12)

=
γ(x0:t−1, y1:t−1)

q(x0:t−1)

τ(xt|xt−1)g(yt|xt)
q(xt|xt−1)

, (13)

= W0:t−1(x0:t−1)
τ(xt|xt−1)g(yt|xt)

q(xt|xt−1)
, (14)

= W0:t−1(x0:t−1)Wt(xt, xt−1), (15)

44

Particle filters
Sequential Importance Sampling (SIS)

Assume that we have computed the unnormalised weights W(i)
0:t−1 =

W(x(i)0:t−1) recursively and obtained samples x(i)0:t−1. We only need the
last sample x(i)t−1 to obtain the weight update given in (15). We can now
sample from the Markov proposal

x(i)t ∼ q(xt|x(i)t−1)

and compute the weights of the path sampler at time t as

W(i)
1:t = W(i)

1:t−1 × W(i)
t ,

where

W(i)
t =

τ(x(i)t |x(i)t−1)g(yt|x
(i)
t)

q(x(i)t |x(i)t−1)
.

45

Particle filters
Sequential Importance Sampling (SIS)

Given the samples x(i)t−1, we first perform sampling step

x(i)t ∼ q(xt|xt−1)

and then compute

W(i)
t =

τ(x(i)t |x(i)t−1)g(yt|x
(i)
t)

q(x(i)t |x(i)t−1)
.

and update

W(i)
1:t = W(i)

1:t−1 × W(i)
t .

These are unnormalised weights and we normalise them to obtain,

w(i)
1:t =

W(i)
1:t∑N

i=1 W(i)
1:t

,

46

Particle filters
Sequential Importance Sampling (SIS)

which finally leads to the empirical measure,

πN(dx0:t) =
N∑
i=1

w(i)
1:tδx(i)0:t

(dx0:t).

47

Particle filters
Sequential Importance Sampling (SIS)

I Sample x(i)0 ∼ q(x0) for i = 1, . . . ,N .
I For t ≥ 1

I Sample: x(i)t ∼ q(xt |x(i)t−1),
I Compute weights:

W(i)
t =

τ(x(i)t |x(i)t−1)g(yt |x
(i)
t)

q(x(i)t |x(i)t−1)
.

and update

W(i)
1:t = W(i)

1:t−1 × W(i)
t .

Normalise weights,

w(i)
1:t =

W(i)
1:t∑N

i=1 W(i)
1:t

.

I Report

πN
t (dx0:t) =

N∑
i=1

w(i)
1:tδx(i)0:t

(dx0:t).
48

Particle filters
Sequential Importance Sampling (SIS)

There is a well-known problem with this scheme: Weight degeneracy.

To resolve this, the approach is to introduce resampling steps.

49

Particle filters
Sequential Importance Sampling (SIS)

There is a well-known problem with this scheme: Weight degeneracy.

To resolve this, the approach is to introduce resampling steps.

49

Particle filters
Sequential Importance Sampling - Resampling (SISR)

I Sample x(i)0 ∼ q(x0) for i = 1, . . . ,N .
I For t ≥ 1

I Sample: x(i)t ∼ q(xt |x(i)t−1),
I Compute weights:

W(i)
t =

τ(x(i)t |x(i)t−1)g(yt |x
(i)
t)

q(x(i)t |x(i)t−1)
.

Normalise: w(i)
1:t = W(i)

1:t/
∑N

i=1 W(i)
1:t

I Report

πN
t (dx0:t) =

N∑
i=1

w(i)
1:tδx(i)0:t

(dx0:t).

I Resample:

x(i)t ∼
N∑
i=1

w(i)
t δx̃(i)t

(dxt).

50

Particle filters
Bootstrap Particle filter

The bootstrap particle filter (BPF) is the SISR algorithm with the fol-
lowing choices:

q(xt|xt−1) = τ(xt|xt−1),

51

Particle filters
Bootstrap particle filter

I Sample x(i)0 ∼ q(x0) for i = 1, . . . ,N .
I For t ≥ 1

I Sample: x(i)t ∼ τ(xt |x(i)t−1),
I Compute weights:

W(i)
t = g(yt |x(i)t),

Normalise: w(i)
1:t = W(i)

1:t/
∑N

i=1 W(i)
1:t

I Report

πN
t (dx0:t) =

N∑
i=1

w(i)
1:tδx(i)0:t

(dx0:t).

I Resample:

x(i)t ∼
N∑
i=1

w(i)
t δx̃(i)t

(dxt).

52

Particle filters
L2 bound for the particle filter

Theorem 3
Assume that the likelihood function is positive and bounded

gt(xt) > 0 and ‖gt‖∞ = sup
xt∈X

gt(xt) < ∞,

for all t ≥ 1. Let ϕ be a bounded function and πN
t be particle filter

approximations of πt . Then, for any N ≥ 1,

‖(ϕ, πt)− (ϕ, πN
t)‖2 ≤

ct‖ϕ‖∞√
N

.

where ct < ∞ is a constant independent of N.

53

Particle filters
Bootstrap particle filter: Example I

Consider the following state-space model

x0 ∼ N (x0; 0, I),
xt|xt−1 ∼ N (xt;Axt−1,Q),

yt|xt ∼ N (yt;Hxt,R).

where

A =


1 0 κ 0
0 1 0 κ
0 0 0.99 0
0 0 0 0.99

 and Q =


κ3

3 0 κ2

2 0

0 κ3

3 0 κ2

2
κ2

2 0 κ 0

0 κ2

2 0 κ


and

H =

(
1 0 0 0
0 1 0 0

)
and R = r

(
1 0
0 1

)
,

where r = 5.
54

Particle filters
Bootstrap particle filter: Example I

Particle filter for this model: Given x(i)1:t−1 for i = 1, . . . ,N ,
I Sample: x̃(i)t ∼ N (xt;Ax

(i)
t−1,Q),

I Compute weights:

W(i)
t = N (yt;Hx̃(i)t ,R),

Normalise: w(i)
t = W(i)

t /
∑N

i=1 W(i)
t

I Report

πN
t (dxt) =

N∑
i=1

w(i)
t δx̃(i)t

(dxt).

I Resample:

x(i)t ∼
N∑
i=1

w(i)
t δx̃(i)t

(dxt).

55

Particle filters
Bootstrap particle filter: Example II

Let us look the following Lorenz 63 model

x1,t = x1,t−1 − γs(x1,t − x2,t) +
√
γξ1,t,

x2,t = x2,t−1 + γ(rx1,t − x2,t − x1,tx3,t) +
√
γξ2,t,

x3,t = x3,t−1 + γ(x1,tx2,t − bx3,t) +
√
γξ3,t,

where γ = 0.01, r = 28, b = 8/3, s = 10, and ξ1,t, ξ2,t, ξ3,t ∼ N (0, 1)
are independent Gaussian random variables. The observation model is
given by

yt = [1, 0, 0]xt + ηt,

where ηt ∼ N (0, σ2
y) is a Gaussian random variable.

56

Bootstrap particle filter
Marginal likelihoods

Another quantity BPF can estimate is the marginal likelihood:

p(y1:t) =
∫

p(y1:t, x0:t)dx0:t.

This quantity is useful for model selection and model comparison.

57

Bootstrap particle filter
Marginal likelihoods

Recall that we have tbe factorisation:

p(y1:t) =
t∏

k=1

p(yk|y1:k−1).

where

p(yt|y1:t−1) =

∫
g(yt|xt)ξ(xt|y1:t−1)dxt.

Recall that we can obtain the approximation of ξ(xt|y1:t−1) by the par-
ticle filter using predictive particles x̄(i)t ∼ τ(xt|x(i)t−1) as

pN(dxt|y1:t−1) =
1

N

N∑
i=1

δx̄(i)t
(dxt).

58

Bootstrap particle filter
Marginal likelihoods

Therefore, given

pN(dxt|y1:t−1) =
1

N

N∑
i=1

δx̄(i)t
(dxt),

we get

pN(yt|y1:t−1) =
1

N

N∑
i=1

g(yt|x̄(i)t).

As a result, we can approximate

pN(y1:t) =
t∏

k=1

pN(yk|y1:k−1).

59

Bootstrap particle filter
Marginal likelihoods

Remarkably, this estimate is unbiased:

E[pN(y1:t)] = p(y1:t).

This is of crucial importance for methods like particle MCMC.

Exercise: Estimate this for the linear Gaussian model and compare it to
Kalman filter’s estimate over M Monte Carlo iterations.

60

Bootstrap particle filter
Marginal likelihoods

Remarkably, this estimate is unbiased:

E[pN(y1:t)] = p(y1:t).

This is of crucial importance for methods like particle MCMC.

Exercise: Estimate this for the linear Gaussian model and compare it to
Kalman filter’s estimate over M Monte Carlo iterations.

60

Bootstrap particle filter
Marginal likelihoods

Remarkably, this estimate is unbiased:

E[pN(y1:t)] = p(y1:t).

This is of crucial importance for methods like particle MCMC.

Exercise: Estimate this for the linear Gaussian model and compare it to
Kalman filter’s estimate over M Monte Carlo iterations.

60

Wehave been looking at the filtering problem, i.e., estimatingπt(xt|y1:t).

What if we want to estimate πt(xt|y1:T) for T > t?

This is called the smoothing problem. These methods are usually imple-
mented backwards in time - they are crucial for parameter estimation.

Next: Smoothing algorithms.

61

Wehave been looking at the filtering problem, i.e., estimatingπt(xt|y1:t).

What if we want to estimate πt(xt|y1:T) for T > t?

This is called the smoothing problem. These methods are usually imple-
mented backwards in time - they are crucial for parameter estimation.

Next: Smoothing algorithms.

61

Wehave been looking at the filtering problem, i.e., estimatingπt(xt|y1:t).

What if we want to estimate πt(xt|y1:T) for T > t?

This is called the smoothing problem. These methods are usually imple-
mented backwards in time - they are crucial for parameter estimation.

Next: Smoothing algorithms.

61

State-space models
The smoothing problem

In this talk, we rely on key smoothing recursions (there are others):

π(xt|y1:T) = π(xt|y1:t)
∫

τ(xt+1|xt)π(xt+1|y1:T)
π(xt+1|y1:t)

dxt+1,

where

π(xt+1|y1:t) =
∫

τ(xt+1|xt)π(xt|y1:t)dxt.

62

State-space models
The smoothing problem

Proof: Let us notice

p(xt|xt+1, y1:T) = p(xt|xt+1, y1:t),

=
p(xt, xt+1|y1:t)
p(xt+1|y1:t)

,

=
π(xt|y1:t)τ(xt+1|xt)

π(xt+1|y1:t)
,

where the last equality follows from theMarkov property.

Nowwe con-
struct the joint

p(xt+1, xt|y1:T) = p(xt|xt+1, y1:T)p(xt+1|y1:T),

=
π(xt|y1:t)τ(xt+1|xt)

π(xt+1|y1:t)
π(xt+1|y1:T).

By integrating out xt+1, the result follows.

63

State-space models
The smoothing problem

Proof: Let us notice

p(xt|xt+1, y1:T) = p(xt|xt+1, y1:t),

=
p(xt, xt+1|y1:t)
p(xt+1|y1:t)

,

=
π(xt|y1:t)τ(xt+1|xt)

π(xt+1|y1:t)
,

where the last equality follows from theMarkov property. Nowwe con-
struct the joint

p(xt+1, xt|y1:T) = p(xt|xt+1, y1:T)p(xt+1|y1:T),

=
π(xt|y1:t)τ(xt+1|xt)

π(xt+1|y1:t)
π(xt+1|y1:T).

By integrating out xt+1, the result follows.
63

State-space models
The smoothing problem

Let us consider our linear-Gaussian model again

π0(x) = N (x;µ0,V0),

τt(xt|xt−1) = N (xt;Atxt−1,Qt),

gt(yt|xt) = N (yt;Htxt,Rt).

In this setting, smoothing can be exactly implemented too.

The resulting algorithm is called theRauch-Tung-Striebel (RTS) smoother.

64

State-space models
The smoothing problem

Let us consider our linear-Gaussian model again

π0(x) = N (x;µ0,V0),

τt(xt|xt−1) = N (xt;Atxt−1,Qt),

gt(yt|xt) = N (yt;Htxt,Rt).

In this setting, smoothing can be exactly implemented too.

The resulting algorithm is called theRauch-Tung-Striebel (RTS) smoother.

64

State-space models
The smoothing problem

Assume we have computed filter moments (µt,Vt)
T
t=0.

The smoother
is then given as

µs
T = µT ,

V s
T = VT ,

µs
t = µt + Jt(µs

t+1 − Atµt),

V s
t = Vt + Jt(V s

t+1 − Vt)J>t ,

where

Jt = VtA>
t V̂

−1
t+1.

65

State-space models
The smoothing problem

Assume we have computed filter moments (µt,Vt)
T
t=0. The smoother

is then given as

µs
T = µT ,

V s
T = VT ,

µs
t = µt + Jt(µs

t+1 − Atµt),

V s
t = Vt + Jt(V s

t+1 − Vt)J>t ,

where

Jt = VtA>
t V̂

−1
t+1.

65

State-space models
The smoothing problem

Assume we have computed filter moments (µt,Vt)
T
t=0.

The smoother
is then given as

µs
T = µT ,

V s
T = VT ,

µs
t = µt + Jt(µs

t+1 − Atµt),

V s
t = Vt + Jt(V s

t+1 − Vt)J>t ,

where

Jt = VtA>
t V̂

−1
t+1.

66

State-space models
The smoothing problem

Assume we have computed filter moments (µt,Vt)
T
t=0. The smoother

is then given as

µs
T = µT ,

V s
T = VT ,

µs
t = µt + Jt(µs

t+1 − Atµt),

V s
t = Vt + Jt(V s

t+1 − Vt)J>t ,

where

Jt = VtA>
t V̂

−1
t+1.

66

The smoothing problem
A look into particle smoothing

For the maximum-likelihood parameter estimation methods, we often
require an approximation of the smoothing distribution π(x0:T |y1:T).

Wait... Can’t we obtain it via the joint sampler we described in the fil-
tering lecture?

Yes, but...

67

The smoothing problem
A look into particle smoothing

For the maximum-likelihood parameter estimation methods, we often
require an approximation of the smoothing distribution π(x0:T |y1:T).

Wait... Can’t we obtain it via the joint sampler we described in the fil-
tering lecture?

Yes, but...

67

The smoothing problem
A look into particle smoothing

For the maximum-likelihood parameter estimation methods, we often
require an approximation of the smoothing distribution π(x0:T |y1:T).

Wait... Can’t we obtain it via the joint sampler we described in the fil-
tering lecture?

Yes, but...

67

The smoothing problem

Recall how we do it: For t ≥ 2,
I Sample:

x̄(i)t ∼ qt(xt|x(i)t−1),

I Weight

w(i)
t ∝

τ(x̄(i)t |x(i)t−1)g(yt|x̄
(i)
t)

qt(x̄
(i)
t |x(i)t−1)

,

I Resample: Choose a(i)t where P(a(i)t = j) ∝ wj
t and set

x(i)1:t = (xa
(i)
t

1:t−1, x̄
a(i)t
t)

The entire state history is resampled! What can go wrong?

68

The smoothing problem
Path degeneracy

If we do resampling every step (which is crucial), then we can only do
it if we track the genealogy backwards. (?)
I After every resample, we throw away the killed particles’ ancestors

and replace them with the survivors’ ancestors.
Path degeneracy is a big issue.

Figure: Source: Svensson, Andreas,Thomas B. Schön, andManonKok. ”Non-
linear state space smoothing using the conditional particle filter.” (2015).

69

The smoothing problem
An alternative: Forward filtering backward (something)

Instead, we can consider the following decomposition

π(x0:T |y1:T) = π(xT |y0:T)
T−1∏
k=0

π(xk|y0:T , xk+1),

= π(xT |y0:T)
T−1∏
k=0

π(xk|y0:k, xk+1). (16)

where

π(xt|xt+1, y1:t) =
π(xt, xt+1|y1:t)
ξ(xt+1|y1:t)

, (17)

=
τ(xt+1|xt)π(xt|y1:t)

ξ(xt+1|y1:t)
. (18)

70

The smoothing problem
An alternative: Forward filtering backward sampling

π(x0:T |y1:T) = π(xT |y0:T)
T−1∏
k=0

π(xk|y0:k, xk+1).

This recursion suggests sampling π(xT |y1:T) from the filter and sam-
ple backwards from π(xk|y0:k, xk+1) by conditioning on the xk+1. This
would provide us a sample x(i)0:T from the smoother.

We approximate the backward distribution as

π(dxt|xt+1, y1:t) =
τ(xt+1|xt)πN(dxt|y1:t)

ξN(xt+1|y1:t)
.

where πN and ξN approximate filtering and predictive measures (see
next slide).

71

The smoothing problem
An alternative: Forward filtering backward sampling

π(dxt|xt+1, y1:t) =
τ(xt+1|xt)πN(dxt|y1:t)∫
τ(xt+1|xt)πN(dxt|y1:t)

Plugging πN(dxt|y1:t) =
∑N

i=1 w(i)
t δx̄(i)t

(dxt) gives

πN(dxt|xt+1, y1:t) =

∑N
i=1 w(i)

t τ(xt+1|x̄(i)t)δx̄(i)t
(dxt)∑N

i=1 w(i)
t τ(xt+1|x̄(i)t)

(19)

72

The smoothing problem
An alternative: Forward filtering backward sampling

If we use the weighted approximation then the FFBSa is given by
I At time T , sample x̃T ∼ πN(dxT |y1:T),
I t from T − 1 to 1:

I Compute smoothing weights

w(i)
t+1|t ∝ w(i)

t τ(x̃t+1|x̄(i)t).

I Then sample

x̃t ∼
N∑
i=1

w(i)
t+1|tδx̄(i)t

(dxt).

The sample x̃0:T is a sample from the smoother. However, it is just a
single sample!

Do the same N times. Reduces path degeneracy, but O(N2(T + 1)).
73

The smoothing problem
Another alternative: Forward filtering backward smoothing

Recall the original smoothing recursions we discussed:

π(xt|y1:T) =
∫

π(xt, xt+1|y1:T)dxt+1,

=

∫
π(xt|xt+1, y1:t)π(xt+1|y1:T)dxt+1,

=

∫
τ(xt+1|xt)π(xt|y1:t)

ξ(xt+1|y1:t)
π(xt+1|y1:T)dxt+1.

Can we use these to build a particle approximation? Recall measure
theoretic form

π(dxt|y1:T) = π(dxt|y1:t)
∫

τ(xt+1|xt)
ξ(xt+1|y1:t)

π(xt+1|y1:T)dxt+1.

74

The smoothing problem
Another alternative: Forward filtering backward smoothing

Recall the original smoothing recursions we discussed:

π(xt|y1:T) =
∫

π(xt, xt+1|y1:T)dxt+1,

=

∫
π(xt|xt+1, y1:t)π(xt+1|y1:T)dxt+1,

=

∫
τ(xt+1|xt)π(xt|y1:t)

ξ(xt+1|y1:t)
π(xt+1|y1:T)dxt+1.

Can we use these to build a particle approximation?

Recall measure
theoretic form

π(dxt|y1:T) = π(dxt|y1:t)
∫

τ(xt+1|xt)
ξ(xt+1|y1:t)

π(xt+1|y1:T)dxt+1.

74

The smoothing problem
Another alternative: Forward filtering backward smoothing

Recall the original smoothing recursions we discussed:

π(xt|y1:T) =
∫

π(xt, xt+1|y1:T)dxt+1,

=

∫
π(xt|xt+1, y1:t)π(xt+1|y1:T)dxt+1,

=

∫
τ(xt+1|xt)π(xt|y1:t)

ξ(xt+1|y1:t)
π(xt+1|y1:T)dxt+1.

Can we use these to build a particle approximation? Recall measure
theoretic form

π(dxt|y1:T) = π(dxt|y1:t)
∫

τ(xt+1|xt)
ξ(xt+1|y1:t)

π(xt+1|y1:T)dxt+1.

74

The smoothing problem
Another alternative: Forward filtering backward smoothing

Backward recursion

π(dxt|y1:T) = π(dxt|y1:t)
∫

τ(xt+1|xt)∫
τ(xt+1|xt)π(dxt|y1:t)

π(dxt+1|y1:T).

This means that we can use approximations {πN(dxt|y1:t)}Tt=1 again to
recursively update the smoother backwards in time and construct the
smoother update

π(dxt+1|y1:T) 7→ π(dxt|y1:T).

75

The smoothing problem
Another alternative: Forward filtering backward smoothing

Backward recursion

π(dxt|y1:T) = π(dxt|y1:t)
∫

τ(xt+1|xt)∫
τ(xt+1|xt)π(dxt|y1:t)

π(dxt+1|y1:T).

This means that we can use approximations {πN(dxt|y1:t)}Tt=1 again to
recursively update the smoother backwards in time and construct the
smoother update

π(dxt+1|y1:T) 7→ π(dxt|y1:T).

75

The smoothing problem
Another alternative: Forward filtering backward smoothing

Assume we have an approximation

πN(dxt+1|y1:T) =
N∑
i=1

w(i)
t+1|Tδx̄(i)t+1

(dxt+1).

where w(i)
T|T = w(i)

T . We can use the recursion in the previous slide to
obtain

π(dxt|y1:T) =
N∑
i=1

w(i)
t|Tδx̄(i)t

(dxt),

where

w(i)
t|T = w(i)

t

N∑
j=1

w(j)
t+1|Tτ(x̄

(j)
t+1|x̄

(i)
t)∑N

l=1 w(l)
t τ(x̄(j)t+1|x̄

(l)
t)

76

We have seen inference for

y1 y2 . . .

x1x0 x2 . . . xt

yt

What if the model has parameters θ?

y1 y2 · · · yk

x1x0 x2 · · · xk

θ

77

We have seen inference for

y1 y2 . . .

x1x0 x2 . . . xt

yt

What if the model has parameters θ?

y1 y2 · · · yk

x1x0 x2 · · · xk

θ

77

We have seen inference for

y1 y2 . . .

x1x0 x2 . . . xt

yt

What if the model has parameters θ?

y1 y2 · · · yk

x1x0 x2 · · · xk

θ

77

Problem definition
Recap – the model, the notation

y1 y2 · · · yk

x1x0 x2 · · · xk

θ

We are given the model

x0 ∼ µθ(x0),
xt|xt−1 ∼ τθ(xt|xt−1),

yt|xt ∼ gθ(yt|xt).

We aim at estimating θ given y1:T .
78

Problem definition
Marginal likelihood maximization

We are interested in solving the global optimization problem

θ? = argmax
θ∈Θ

log pθ(y1:T),

where

pθ(y1:T) =
∫

γθ(x0:T , y1:T)dx0:T .

In this lecture, we are interested in gradient-based approaches for max-
imization of log pθ(y1:T).

79

The parameter estimation problem
Marginal likelihood maximization

A generic way to do this would be to run

θi+1 = θi + γ∇ log pθ(y1:T).

I Well understood gradient scheme,
I Can be also replaced by an adaptive gradient scheme. (Adam, your

favourite one...)
However, the gradient is not computable...

80

The parameter estimation problem
How to compute the gradient?

For this maximization, we will be interested in computing

∇θ log pθ(y1:T).

For this, we use Fisher’s identity.

81

The parameter estimation problem
How to compute the gradient?

Proposition 1 (Fisher’s identity)

Under appropriate regularity conditions, we have

∇θ log pθ(y1:T) =
∫

∇θ log γθ(x0:T , y1:T)pθ(x0:T |y1:T)dx0:T .

82

The parameter estimation problem
How to compute the gradient?

Proof.
Let us note that

∇θ log pθ(y1:T) =
∇θpθ(y1:T)
pθ(y1:T)

,

=
∇
∫
γθ(x0:T , y1:T)dx0:T

pθ(y1:T)
,

=

∫
∇γθ(x0:T , y1:T)

pθ(y1:T)
dx0:T ,

=

∫
∇ log γθ(x0:T , y1:T)γθ(x0:T , y1:T)

pθ(y1:T)
dx0:T ,

=

∫
∇ log γθ(x0:T , y1:T)πθ(x0:T |y1:T)dx0:T .

�

83

The parameter estimation problem
How to compute the gradient?

Given Fisher’s identity,

∇θ log γθ(y1:T) =
∫

∇θ log γθ(x0:T , y1:T)πθ(x0:T |y1:T)dx0:T .

and

log pθ(x0:T , y1:T) = logµθ(x0) +
T∑

t=1

log τθ(xt|xt−1) +

T∑
t=1

log gθ(yt|xt),

84

The parameter estimation problem
How to compute the gradient?

Given

log pθ(x0:T , y1:T) = logµθ(x0) +
T∑

t=1

log τθ(xt|xt−1) +

T∑
t=1

log gθ(yt|xt),

Some shortcut notation:

sθ1(x−1, x0) = sθ0(x0) = ∇ logµθ(x0),
sθ,t(xt−1, xt) = ∇ log gθ(yt|xt) +∇ log τθ(xt|xt−1).

85

The parameter estimation problem
How to compute the gradient?

So finally the gradient can be written as an expectation

∇θ log pθ(y1:T) =
∫

∇θ log pθ(x0:T , y1:T)pθ(x0:T |y1:T)dx0:T .

We identify the marginal likelihood as an additive functional

∇θ log pθ(y1:T) = SθT(x1:T),

=

∫
XT+1

(T∑
t=1

sθt (xt−1, xt)

)
πθ(x0:T |y1:T)dx0:T .

86

The parameter estimation problem
How to compute the gradient?

But how do we compute? Recall

sθt (xt−1, xt) = ∇ log gθ(yt|xt) +∇ log τθ(xt|xt−1).

TheBPFwith parameter gradient computation. Fix θ and assume {X(i)
1:t−1, α

(i)
t−1}

are given.
I Sample: x̄(i)t ∼ τθ(xt|x

(i)
t−1).

I Weight w(i)
t ∝ g(yt|x̄(i)t).

I Resample:

x(i)t ∼
N∑
i=1

w(i)
t δx̄(i)t

(dxt),

i.e. x(i)t = x̄a
(i)
t

t with P(a(i)t = j) = wj
t and construct the estimate

α
(i)
t = α

a(i)t
t−1 + sθt (x

a(i)t
t−1, x

(i)
t)

87

The parameter estimation problem
How to compute the gradient?

Then

Sθ,NT =
1

N

N∑
i=1

α
(i)
T

However, as this naive “forward smoother”O(N) iteration complexity)
suffers from path degeneracy as we discussed before, therefore the esti-
mates will not be reliable.

Use FFBS described before however the computation won’t be recursive
(it is offline) and O(N2) complexity - but has better properties.

88

The parameter estimation problem
How to compute the gradient?

There is amethod called forward smoothing, which can build the smoothed
additive functional expectations online. Let us go back and write, for
n < T ,

∇θ log pθ(y1:n) = SθT(x1:n),

=

∫
Xn+1

(n∑
t=1

sθt (xt−1, xt)

)
πθ(x0:n|y1:n)dx0:n,

=

∫
Vθ
n (xn)πθ(xn|y1:n)dxn.

where

Vθ
n (xn) =

∫ (n∑
k=1

sk(xk−1, xk)

)
pθ(x0:n−1|y0:n−1, xn)dx0:n−1.

89

The parameter estimation problem
How to compute the gradient?

The key recursion, note that

Vθ
n+1(xn+1) =

∫ (n+1∑
k=1

sk(xk−1, xk)

)
pθ(x0:n|y0:n, xn+1)dx0:n,

=

∫ (n∑
k=1

sk(xk−1, xk) + sn(xn−1, xn)

)
pθ(x0:n−1|y0:n−1, xn)dx0:n−1pθ(xn|y0:n, xn+1)dxn,

=

∫ (
Vθ
n (xn) + sn(xn−1, xn)

)
pθ(xn|y0:n, xn+1)dxn.

We have a recursion for (Vθ
n)n≥1 that can be estimated online using

(x(i)t , x(i)t+1).

90

The parameter estimation problem
How to compute the gradient?

How do compute things only forward pass? Recall FFBS
I At time T , sample x̃T ∼ πN

θ (dxT |y1:T),
I t from T − 1 to 1:

I Compute smoothing weights

w(i)
t+1|t ∝ w(i)

t τθ(x̃t+1|x̄(i)t).

I Then sample

x̃t ∼
N∑
i=1

w(i)
t+1|tδx̄(i)t

(dxt).

91

The parameter estimation problem
How to compute the gradient?

Forward only smoothing: Assume we have a good approximation of
Vθ
t (x

(i)
t).

I Sample x̄(i)t+1 ∼ f (·|x(i)t),
I Use it to compute FFBS smoothing weights (with predictive parti-

cles)

w(i)
t+1|t ∝ w(i)

t τθ(x̄
(i)
t+1|x

(i)
t).

and

Vθ
t+1(x̄

(i)
t+1) =

N∑
j=1

w(i)
t+1|t

(
Vθ
t (x

(i)
t) + st+1(x

(i)
t , x(i)t+1)

)
.

and build

Sθ,Nt+1 =

N∑
j=1

w(i)
t+1V

θ
t (x

(i)
t+1).

Forward smoothing.

92

The parameter estimation problem
How to compute the gradient?

Forward only smoothing: Assume we have a good approximation of
Vθ
t (x

(i)
t).

I Sample x̄(i)t+1 ∼ f (·|x(i)t),
I Use it to compute FFBS smoothing weights (with predictive parti-

cles)

w(i)
t+1|t ∝ w(i)

t τθ(x̄
(i)
t+1|x

(i)
t).

and

Vθ
t+1(x̄

(i)
t+1) =

N∑
j=1

w(i)
t+1|t

(
Vθ
t (x

(i)
t) + st+1(x

(i)
t , x(i)t+1)

)
.

and build

Sθ,Nt+1 =

N∑
j=1

w(i)
t+1V

θ
t (x

(i)
t+1).

Forward smoothing.
92

We have discussed MLE approach.

We can also look at the Bayesian estimation in SSMs, i.e., for the model
where we have p(θ) as the prior of θ.

93

We have discussed MLE approach.

We can also look at the Bayesian estimation in SSMs, i.e., for the model
where we have p(θ) as the prior of θ.

93

Parameter inference
Nested particle filter

Let us discuss ameta-sampler that can be used to sample from p(θ|y1:t).
First, let us try to use a naive importance sampler to sample from p(θ|y1:t)
(forget for now about latents x1:t).

How to develop an importance sampler for evolving p(θ|y1:t)?

94

Parameter inference
Nested particle filter

Let us recall the recursions:

p(θ|y1:t) =
p(yt|θ)p(θ|y1:t−1)

p(yt|y1:t−1)
.

With these recursions in mind, we can indeed naively try to develop an
importance sampler.

95

Parameter inference
Nested particle filter

Let us recall the recursions:

p(θ|y1:t) =
p(yt|θ)p(θ|y1:t−1)

p(yt|y1:t−1)
.

With these recursions in mind, we can indeed naively try to develop an
importance sampler.

95

Parameter inference
Nested particle filter

Let us choose a proposal: q(θ) and then perform importance sampling:

I Sample θ(i) ∼ q(θ) for i = 1, . . . ,N .

I Compute the importance weights:

W(i)
t =

p(y1:t|θ(i))p(θ(i))
q(θ(i))

.

I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

Canwe get a sequential structure in weights as in the particle filter case?

96

Parameter inference
Nested particle filter

Let us choose a proposal: q(θ) and then perform importance sampling:

I Sample θ(i) ∼ q(θ) for i = 1, . . . ,N .
I Compute the importance weights:

W(i)
t =

p(y1:t|θ(i))p(θ(i))
q(θ(i))

.

I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

Canwe get a sequential structure in weights as in the particle filter case?

96

Parameter inference
Nested particle filter

Let us choose a proposal: q(θ) and then perform importance sampling:

I Sample θ(i) ∼ q(θ) for i = 1, . . . ,N .
I Compute the importance weights:

W(i)
t =

p(y1:t|θ(i))p(θ(i))
q(θ(i))

.

I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

Canwe get a sequential structure in weights as in the particle filter case?

96

Parameter inference
Nested particle filter

Let us choose a proposal: q(θ) and then perform importance sampling:

I Sample θ(i) ∼ q(θ) for i = 1, . . . ,N .
I Compute the importance weights:

W(i)
t =

p(y1:t|θ(i))p(θ(i))
q(θ(i))

.

I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

Canwe get a sequential structure in weights as in the particle filter case?

96

Parameter inference
Nested particle filter

We have

W0:t(θ) =
p(y1:t|θ)p(θ)

q(θ)
.

Unlike the particle filter case, we do not have a sequential structure in
the weights. One can try

W0:t(θ) = p(yt|y1:t−1, θ)W0:t−1(θ).

This means that we have to unroll it back to time zero:

W0:t(θ) = p(yt|y1:t−1, θ)p(yt−1|y1:t−2, θ) · · ·
p(θ)
q(θ)

.

97

Parameter inference
Nested particle filter

We have

W0:t(θ) =
p(y1:t|θ)p(θ)

q(θ)
.

Unlike the particle filter case, we do not have a sequential structure in
the weights. One can try

W0:t(θ) = p(yt|y1:t−1, θ)W0:t−1(θ).

This means that we have to unroll it back to time zero:

W0:t(θ) = p(yt|y1:t−1, θ)p(yt−1|y1:t−2, θ) · · ·
p(θ)
q(θ)

.

97

Parameter inference
Nested particle filter

Given

W0:t(θ) = p(yt|y1:t−1, θ)p(yt−1|y1:t−2, θ) · · ·
p(θ)
q(θ)

.

the practical weight computation would be:

W(i)
0 =

p(θ(i))
q(θ(i))

,

and

W(i)
t = p(yt|y1:t−1, θ

(i))W(i)
t−1.

98

Parameter inference
Nested particle filter

This would cause multiple issues:
I The algorithm is essentially putting samples into the space and just

recomputing weights.

I Samples do not move!
I Even if we introduce resampling at every stage, then still have the

same problem.
I Samples do not move + are resampled.
I Only one sample will survive.

I Weneed to introduce a newmechanism tomove the samples around.

99

Parameter inference
Nested particle filter

This would cause multiple issues:
I The algorithm is essentially putting samples into the space and just

recomputing weights.
I Samples do not move!

I Even if we introduce resampling at every stage, then still have the
same problem.
I Samples do not move + are resampled.
I Only one sample will survive.

I Weneed to introduce a newmechanism tomove the samples around.

99

Parameter inference
Nested particle filter

This would cause multiple issues:
I The algorithm is essentially putting samples into the space and just

recomputing weights.
I Samples do not move!

I Even if we introduce resampling at every stage, then still have the
same problem.

I Samples do not move + are resampled.
I Only one sample will survive.

I Weneed to introduce a newmechanism tomove the samples around.

99

Parameter inference
Nested particle filter

This would cause multiple issues:
I The algorithm is essentially putting samples into the space and just

recomputing weights.
I Samples do not move!

I Even if we introduce resampling at every stage, then still have the
same problem.
I Samples do not move + are resampled.

I Only one sample will survive.
I Weneed to introduce a newmechanism tomove the samples around.

99

Parameter inference
Nested particle filter

This would cause multiple issues:
I The algorithm is essentially putting samples into the space and just

recomputing weights.
I Samples do not move!

I Even if we introduce resampling at every stage, then still have the
same problem.
I Samples do not move + are resampled.
I Only one sample will survive.

I Weneed to introduce a newmechanism tomove the samples around.

99

Parameter inference
Nested particle filter

This would cause multiple issues:
I The algorithm is essentially putting samples into the space and just

recomputing weights.
I Samples do not move!

I Even if we introduce resampling at every stage, then still have the
same problem.
I Samples do not move + are resampled.
I Only one sample will survive.

I Weneed to introduce a newmechanism tomove the samples around.

99

Parameter inference
Nested particle filter

We need a way to shake the particles, without introducing too much
error.
I Use a jittering kernel (Crisan and Míguez, 2014):

κ(dθ|θ′) = (1− εN)δθ′(dθ) + εNτ(dθ|θ′), (20)

to sample new particles θ(i)t ∼ κ(·|θ(i)t−1).
I We usually choose εN ≤ 1√

N
.

I τ can be simple, i.e., multivariate Gaussian or multivariate t distri-
bution.

100

Parameter inference
Nested particle filter

The jittered sampler:
I Sample θ̄(i)t ∼ κ(·|θ(i)t−1) for i = 1, . . . ,N .

I Compute the importance weights:

W(i)
t = p(yt|y1:t−1, θ̄

(i)
t),

I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

I Resample:

θ
(i)
t ∼

N∑
j=1

w(j)
t δ

θ̄
(j)
t
(dθ).

101

Parameter inference
Nested particle filter

The jittered sampler:
I Sample θ̄(i)t ∼ κ(·|θ(i)t−1) for i = 1, . . . ,N .
I Compute the importance weights:

W(i)
t = p(yt|y1:t−1, θ̄

(i)
t),

I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

I Resample:

θ
(i)
t ∼

N∑
j=1

w(j)
t δ

θ̄
(j)
t
(dθ).

101

Parameter inference
Nested particle filter

The jittered sampler:
I Sample θ̄(i)t ∼ κ(·|θ(i)t−1) for i = 1, . . . ,N .
I Compute the importance weights:

W(i)
t = p(yt|y1:t−1, θ̄

(i)
t),

I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

I Resample:

θ
(i)
t ∼

N∑
j=1

w(j)
t δ

θ̄
(j)
t
(dθ).

101

Parameter inference
Nested particle filter

As you could guess, “compute the importance weights” step should be
done using a particle filter.
I Sample θ̄(i)t ∼ κ(·|θ(i)t−1) for i = 1, . . . ,N .

I Compute the importance weights:

W(i)
t = pM(yt|y1:t−1, θ̄

(i)
t),

using a particle filter with M particles.
I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

I Resample:

θ
(i)
t ∼

N∑
j=1

w(j)
t δ

θ̄
(j)
t
(dθ).

This algorithm is purely online.

102

Parameter inference
Nested particle filter

As you could guess, “compute the importance weights” step should be
done using a particle filter.
I Sample θ̄(i)t ∼ κ(·|θ(i)t−1) for i = 1, . . . ,N .
I Compute the importance weights:

W(i)
t = pM(yt|y1:t−1, θ̄

(i)
t),

using a particle filter with M particles.

I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

I Resample:

θ
(i)
t ∼

N∑
j=1

w(j)
t δ

θ̄
(j)
t
(dθ).

This algorithm is purely online.

102

Parameter inference
Nested particle filter

As you could guess, “compute the importance weights” step should be
done using a particle filter.
I Sample θ̄(i)t ∼ κ(·|θ(i)t−1) for i = 1, . . . ,N .
I Compute the importance weights:

W(i)
t = pM(yt|y1:t−1, θ̄

(i)
t),

using a particle filter with M particles.
I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

I Resample:

θ
(i)
t ∼

N∑
j=1

w(j)
t δ

θ̄
(j)
t
(dθ).

This algorithm is purely online. 102

This machinery and much more was built for the last 30 years for filter-
ing and solving other problems.

There are lots of exciting directions available (discussion).

103

This machinery and much more was built for the last 30 years for filter-
ing and solving other problems.

There are lots of exciting directions available (discussion).

103

Thanks!

104

References I

Crisan, Dan and Joaquín Míguez (2014). “Particle-kernel estima-
tion of the filter density in state-space models”. In: Bernoulli 20.4,
pp. 1879–1929.
Särkkä, Simo (2013). Bayesian filtering and smoothing. Cambridge
University Press.

105

	State-Space Models and Stochastic Filtering
	The Kalman Filter
	Monte Carlo methods - an introduction
	Particle filters
	Smoothing
	Background
	References

