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So far, we have covered the basic sampling techniques:

I Uniform random number generation
I Linear congruential generators

I Inversion (inverse transform) sampling
I U ∼ U(0, 1)
I X = F−1(U)

I Rejection sampling
I X′ ∼ q(x)
I Accept X′ with probability Π(X′)/Mq(X′)

I Importance sampling
I Sample X1, . . . ,XN ∼ q(x)
I Estimate (ϕ, π) ≈

∑N
i=1 ϕ(Xi)wi,

I Metropolis-Hastings algorithm

2
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Metropolis-Hastings
Bayesian inference with MH

Let us look at now the Bayesian inference problem.

We can solve it in full generality (in theory) using MH.

Recall the general formulation

p(x|y1:n) =
p(y1:n|x)p(x)

p(y1:n)
=

∏n
i=1 p(yi|x)p(x)

p(y1:n)
,

when y1, . . . , yn are conditionally independent given x.

3



Metropolis-Hastings
Bayesian inference with MH

We write

p(x|y1:n) ∝
n∏

i=1

p(yi|x)p(x),

and set

γ(x) =
n∏

i=1

p(yi|x)p(x),

as our unnormalised posterior.
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Metropolis-Hastings
Bayesian inference with MH

The generic MH for Bayesian inference, given xn−1

I Sample X′ ∼ q(x′|xn−1).
I Accept xn = x′ with probability

α(xn−1, x′) = min
{
1,

γ(x′)q(xn−1|x′)
γ(xn−1)q(x′|xn−1)

}
.

I Otherwise, Xn = xn−1.
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Metropolis-Hastings
Example: Source localisation

Recall our example about localising a source using observations from a
sensor network.

We cannow formalise this problem. Assume that the source is located at
x ∈ R2 and the sensor network is located at s1, . . . , s3 ∈ R2 (3 sensors).

Assume that these three sensors ”observe” the source according to:

p(yi|x, si) = N (yi; ‖x − si‖,R),

where yi is the observation from sensor i.
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Metropolis-Hastings
Example: Source localisation
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Figure: Source localisation
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Metropolis-Hastings
Example: Source localisation

Assume that you are asked to estimate the location of the source given
the observations y1, y2, y3. What is the model?

We first need a prior on the source location:

p(x) = N (x;µ,Σ),

where µ is the prior mean and Σ is the prior covariance. We already
have the likelihoods for each yi.
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Metropolis-Hastings
Example: Source localisation

The posterior is given by

p(x|y1, y2, y3, s1, s2, s3) ∝ p(x)
3∏

i=1

p(yi|x, si).
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Metropolis-Hastings
Example: Source localisation

We choose a random walk proposal:

q(x′|x) = N (x′; x, σ2I).

This is symmetric so the acceptance ratio is:

r(x, x′) =
p(x′)p(y1|x′, s1)p(y2|x′, s2)p(y3|x′, s3)
p(x)p(y1|x, s1)p(y2|x, s2)p(y3|x, s3)

.

10



Recap on sampling
Metropolis-Hastings

The black-box way of doing it is to use Metropolis-Hastings.

I Sample X′ ∼ q(x′|Xn−1)

I Set Xn = X′ with probability

α(X′|Xn−1) = min
{
1,

Π(X′)q(Xn−1|X′)

Π(Xn−1)q(X′|Xn−1)

}
.

I Otherwise, set Xn = Xn−1.
where Π(x) = exp(−U(x)).

This leaves π invariant.
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Recap on sampling
Metropolis adjusted Langevin algorithm

The choice of the proposal is crucial. One very popular choice is the
Langevin proposal.

X′ = Xn−1 − γ∇U(Xn−1) +
√
2γZn

where Zn ∼ N (0, I) and γ is the step size. This results in

q(x′|x) = N (x − γ∇U(x), 2γI).

Why is this a good choice?
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Langevin-based approaches
Crash course on Langevin SDE - I

Consider the Langevin SDE for a generic drift ∇V :

dXt = −∇V(Xt)dt +
√
2dBt,

where (Bt)t≥0 is a Brownianmotion.

This SDEhas a stationarymeasure

π ∝ e−V(x).

Therefore, for a classical sampling problem for, say π(x), we could set
V(x) = − logπ(x) (negative density).

This diffusion converges to its stationary measure exponentially fast if
V is µ-strongly-convex.
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Langevin-based approaches
Crash course on Langevin SDE - II – Optimisation

Consider the Langevin SDE for a generic drift ∇V :

dXt = −∇V(Xt)dt +
√

2

β
dBt,

where (Bt)t≥0 is a Brownianmotion.

This SDEhas a stationarymeasure

π ∝ e−βV(x).

This stationary measure concentrates on the minima of V as β → ∞
(Hwang, 1980).

Langevin diffusion is a global optimiser.
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Langevin-based approaches
Crash course on Langevin SDE - III: Numerical discretisation

The Euler discretisation is the unadjusted Langevin algorithm (ULA):

Xγ
t+1 = Xγ

t − γ∇V(Xγ
t ) +

√
2γWt+1

where (Wt)t≥0 are i.i.d standard Normal random variables.

This chain has a different stationary measure πγ but a number of guar-
antees can be derived for its convergence.

Theorem 1 (Durmus and Moulines, 2019)
Let L(Xt) be the law of the iterates of ULA, then

W2
2 (L(X

γ
t ), π) .

(
1− γκ

2

)t+1
(d/m+ ‖x − x?‖2) + γ,

under suitable regularity conditions for V, restriction on γ where κ :=
κ(m, L).
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Langevin-based approaches
ULA for Bayesian inference

An important note here is that, we can sample from the posterior p(x|y)
using ULA as

p(x|y) ∝ p(x, y),

and

Xγ
n+1 = Xγ

n + γ∇ log p(Xγ
n , y) +

√
2γWn+1.

Wecan see that this algorithmwould approximately sample from p(x|y).
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Langevin-based approaches
ULA for Bayesian inference

Let us say we have data y1, . . . , yM forM large. We can write the poste-
rior as

p(x|y1:M) ∝ p(x)
M∏
i=1

p(yi|x).

therefore, our potential becomes

V(x) = − log p(x)−
M∑
i=1

log p(yi|x).

Mini-quiz: What is the problem with MALA (or MH in general) in this
case?

17



Langevin-based approaches
ULA for Bayesian inference

Let us say we have data y1, . . . , yM forM large. We can write the poste-
rior as

p(x|y1:M) ∝ p(x)
M∏
i=1

p(yi|x).

therefore, our potential becomes

V(x) = − log p(x)−
M∑
i=1

log p(yi|x).

Mini-quiz: What is the problem with MALA (or MH in general) in this
case?

17



Langevin-based approaches
ULA for Bayesian inference

A similar problem of course would be for ULA.

However, we can resolve this, as we can approximate the gradient using
subsampling:

∇V(x) = ∇ log p(x) +
M∑
i=1

∇ log p(yi|x),

≈ ∇ log p(x) +
M
m

m∑
j=1

∇ log p(ykj |x) = ∇̂V(x),

where kj ∼ Unif{1, . . . ,M}, for j = 1, . . . ,m for m � M.

Stochastic gradients.
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Langevin-based approaches
ULA for Bayesian inference

One can run ULA with stochastic gradients:

Xγ
n+1 = Xγ

n − γ∇̂V(Xγ
n ) +

√
2γWn+1.

The resulting method is called stochastic gradient Langevin dynamics
(SGLD) (Welling and Teh, 2011).
I Widely used for large-scale datasets.
I It has similar guarantees toULA inWasserstein-2 distance for strongly

convex V .
I Also used to model and analyse the behaviour of stochastic gradi-

ent descent methods (SGD) in deep learning.
Web based simulations if time permits.
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We have seen approaches so far in sampling.

Next: An introduction to generative modelling
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Recap on sampling
What is sampling, what is generative modelling?

Sampling: Given a probability measure π, output (approximately) a
sample X ∼ π.

I Typically π ∝ exp(−U(x)) where U(x) is a potential (or energy)
function.

Generative modelling: Given a dataset {xi}ni=1 or given an empirical
measure

p̂data =
1

n

n∑
i=1

δxi ,

output (approximately) a sample X ∼ pdata.
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Recap on sampling
Markov chain Monte Carlo

Sampling is a very general problem and a very old topic in statistics and
computer science. One of the most popular methods is Markov chain
Monte Carlo (MCMC).

I Scales favourably with dimension
I Requires only the ability to evaluate the density up to a normaliz-

ing constant
The principle is to construct a Markov chain with stationary distribu-
tion π and sample from it.
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Energy Based Models
Introduction

Given p̂data, we would like to estimate the density pdata.

I This is a classical density estimation problem.
Discussion: Can we use kernel density estimation for this problem?

What is a sensible parametric model?
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Energy Based Models
Introduction

Consider the Gibbs-type probability measure

πθ ∝ exp(−Uθ(x)),

where Uθ(x) is a potential function.

When is this a flexible model for pdata?
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Energy Based Models
Introduction

Recall that if Uθ(x) is a neural network, then Uθ(x) is a universal ap-
proximator.

For any continuous functionU(x), there exists a neural networkUθ(x)
such that

‖U(x)− Uθ(x)‖∞ < ε.
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Energy Based Models
Introduction

Let U : X → R and Uθ : X → R be a neural network. Let π ∝
exp(−U(x)) and πθ ∝ exp(−Uθ(x)).

Then (Atchadé et al., 2023)

‖π − πθ‖TV ≤ m(X)
2

‖U − Uθ‖∞

where m is the Lebesgue measure on X (with finite measure).

Therefore, an EBM is a universal approximator on bounded spaces.
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Energy Based Models
Training EBMs

Training EBMs is a hard problem and there is a VAST literature on this
topic.

We will review (expanding):
I Maximum Likelihood Estimation
I Score Matching

and variations of these.
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Energy Based Models
Maximum Likelihood Estimation

The idea is to maximise the expected likelihood of the data under the
model. The expected log-likelihood of the data is given by

`(θ) := Epdata [logπθ(X)], (1)

where pdata is the data distribution.

Maximising this is equivalent tominimising theKL divergence between
pdata and πθ.
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Energy Based Models
Maximum Likelihood Estimation

Let us look at the objective a bit more closely.

`(θ) = Epdata [logπθ(X)] =
∫

logπθ(x)pdata(x)dx,

= −
∫

Uθ(x)pdata(x)dx − logZθ,

where Zθ =
∫

exp(−Uθ(x))dx is the normalising constant.

For gradi-
ent based optimisation, we can consider

∇θ`(θ) = −Epdata [∇θUθ(X)]−∇θ logZθ.

The last term is intractable.
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Energy Based Models
Maximum Likelihood Estimation

Assuming
∫
e−Uθ(x)dx < ∞, we have

∇θ logZθ = −Eπθ
[∇θUθ(X)].

30



Energy Based Models
Maximum Likelihood Estimation

Therefore, we have the full gradient that is of the form

∇θ`(θ) = −Epdata [∇θUθ(X)] + Eπθ
[∇θUθ(X)].

We get then its empirical approximation

∇θ`n(θ) = −1

n

n∑
i=1

∇θUθ(xi) + Eπθ
[∇θUθ(X)].

The second term is still problematic!
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Energy Based Models
Maximum Likelihood Estimation

∇θ`n(θ) = −1

n

n∑
i=1

∇θUθ(xi) + Eπθ
[∇θUθ(X)].

The idea here is to use MCMC to sample from πθ to approximate the
expectation.
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Energy Based Models
Maximum Likelihood Estimation

Consider the following optimization (gradient ascent) procedure

θk+1 = θk + δ∇θ`n(θk),

= θk −
δ

n

n∑
i=1

∇Uθk(xi) + δEπθk
[∇Uθk(X)]

At iteration k, the expectation needs to be approximated, For this, we
run a separate ULA chain at each k:

X(m)
k = X(m−1)

k − γ∇Uθk(X
(m−1)
k ) +

√
2γW(m)

k ,

where (W(m)
k )m≥0 are i.i.d standard Normal random variables.
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Energy Based Models
Maximum Likelihood Estimation

AlgorithmMLE for EBMs via ULA
1: Input: The dataset {xi}ni=1, the step size δ, the number of MCMC

steps M, the burn-in B, the step size γ, the number of iterations N .
2: for k = 1, . . . ,K do
3: Fix X(0)

k
4: form = 1, . . . ,M do
5: X(m)

k = X(m−1)
k − γ∇Uθk(X

(m−1)
k ) +

√
2γW(m)

k .
6: end for
7: ∇`n(θk) = −1

n
∑n

i=1∇Uθk(xi) +
1

M−B
∑M

m=B+1∇Uθk(X
(m)
k ).

8: θk+1 = θk + δ∇`n(θk).
9: end for
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Energy Based Models
Contrastive Divergence

Algorithm Pseudocode for EBM training via CD-1
1: Input: The dataset {xi}ni=1, the step size δ, the number of MCMC

steps M, the burn-in B, the step size γ, the number of iterations N .
2: for k = 1, . . . ,K do
3: Randomly choose i.
4: X(0)

k = xi.
5: X(1)

k = X(0)
k − γ∇Uθk(X

(0)
k ) +

√
2γW(1)

k .
6: ∇`n(θk) = −1

n
∑n

i=1∇Uθk(xi) +∇Uθk(X
(1)
k ).

7: θk+1 = θk + δ∇`n(θk).
8: end for

Often with the stochastic gradients:

n−1
n∑

i=1

∇Uθk(xi) ≈ J−1
J∑

j=1

∇Uθk(xij).
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Energy Based Models
Persistent Contrastive Divergence

Algorithm Pseudocode for EBM training via PCD
1: Input: The dataset {xi}ni=1, the step size δ, the number of MCMC

steps M, the burn-in B, the step size γ, the number of iterations N .
2: for k = 1, . . . ,K do
3: for i = 1, . . . ,N do
4: X(i)

k = X(i)
k − γ∇Uθk(X

(i)
k ) +

√
2γW(i)

k .
5: end for
6: ∇`n(θk) = −n−1

∑n
i=1∇Uθk(xi) + N−1

∑N
i=1∇Uθk(X

(i)
k ).

7: θk+1 = θk + δ∇`n(θk).
8: end for
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Energy Based Models
Maximum Likelihood Estimation

Algorithm “Short-Run MCMC” (Nijkamp et al., 2019)
1: Input: The dataset {xi}ni=1, the step size δ, the number of MCMC

steps M, the burn-in B, the step size γ, the number of iterations N .
2: for k = 1, . . . ,K do
3: Fix X(0)

k ∼ p0
4: form = 1, . . . ,M do
5: X(m)

k = X(m−1)
k − γ∇Uθk(X

(m−1)
k ) +

√
2γW(m)

k .
6: end for
7: ∇`n(θk) = −1

n
∑n

i=1∇Uθk(xi) +
1

M−B
∑M

m=B+1∇Uθk(X
(m)
k ).

8: θk+1 = θk + δ∇`n(θk).
9: end for

Note this method also noises the data with a single step every iteration.
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We covered so far maximum likelihood estimation for EBMs.

I MLE training procedures are unstable and hard to tune.

Next: Energy Based Models and Score Matching.
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Energy Based Models
Score Matching

Recall the Euler discretisation is theunadjusted Langevin algorithm (ULA):

Xγ
t+1 = Xγ

t + γ∇ logΠ(Xγ
t ) +

√
2γWt+1

where (Wt)t≥0 are i.i.d standard Normal random variables.

Notice that we only need the gradient of the (unnormalised) log-density
for sampling.

The idea of score matching is to directly estimate the gradient of the
log-density.
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Energy Based Models
Score Matching

Score matching methods are based on Fisher divergence, which is de-
fined as

F(π1||π2) =
1

2
Eπ1 [‖∇ logπ1(X)−∇ logπ2(X)‖2]. (2)

In the case of generative modelling, we are interested in computing θ?
where

θ? ∈ argmin
θ

F(pdata||πθ),

where

F(pdata||πθ) =
1

2
Epdata [‖∇ log pdata(X)−∇ logπθ(X)‖2]. (3)
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Energy Based Models
Score Matching

Proposition 1 (Hyvärinen, 2005)

The loss in (3) can be written as

F(pdata||πθ) = Epdata

[
Tr∇2 logπθ(X) +

1

2
‖∇ logπθ(X)‖2

]
. (4)
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Energy Based Models
Score Matching

Figure: From Murphy (2023) 42



Energy Based Models
Score Matching

Unfortunately, this idea doesn’t quite work in practice.

Image credit: https://yang-song.net/blog/2021/score/
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Energy Based Models
Denoising Score Matching

Score matching can be inefficient and is expensive due to the Hessian
term. Instead, we can leverage the following idea.

Let us define the noisy version of the data distribution as

pσdata(x) =
∫

pdata(x′)K(x|x′)dx′,

where K(x|x′) is a kernel.
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Energy Based Models
Denoising Score Matching

Proposition 2 (Vincent, 2011)

Given the Fisher divergence between the noisy data distribution and the
model distribution,

F(pσdata||πθ) = Epσdata

[
1

2
‖∇ log pσdata(X)−∇ logπθ(X)‖2

]
, (5)

we have

F(pσdata||πθ) = Ep(x,x′)

[
1

2
‖∇x logK(X|X′)−∇ logπθ(X)‖2

]
. (6)

where p(x, x′) = pdata(x′)K(x|x′).
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Energy Based Models
Denoising Score Matching

For example, one can simply choose

K(x|x′) = N (x; x′, σ2Id),

where σ is a hyperparameter. In this situation, the estimate will take the
form (Song and Kingma, 2021)

F(pσdata||πθ) = Epdata(x′)Ez∼N (0,σ2Id)

[
1

2

∥∥∥ z
σ
+∇x logπθ(x′ + σz)

∥∥∥2] .

46



Energy Based Models
Denoising Score Matching

One can estimate this score, by plugging the empirical data distribution
in using

p̂data =
1

n

n∑
i=1

δxi .

and using samples from the Gaussian distribution, which results in the
unbiased estimate of the loss

F̂(pσdata||πθ) =
1

2n

n∑
i=1

∥∥∥∥∥z(i)σ +∇x logπθ(xi + σz(i))

∥∥∥∥∥
2

.

47



Energy Based Models
Denoising Score Matching

Perturbed scores are better behaved:

But there is a bias as we approximate the noisy data distribution.

This observation led to the idea of adding progressively more noise to
data and learn associated scores (a bit later).

Image credit: https://yang-song.net/blog/2021/score/
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Energy Based Models
Denoising Score Matching with Multiple Levels: Towards diffusion models

Denoising score matching appeared as the cheapest option to approxi-
mate scores, but has an inherent bias as it estimates the noisy scores.

For σ ≈ 0, the bias is small, but training is unstable and mixing can
be arbitrarily slow, especially for pdata with multiple modes or which
concentrates on low-dimensional manifolds.

Can we “bridge” easy to sample distributions and the data distribution,
via the use of noise scales?
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Energy Based Models
Denoising Score Matching with Multiple Levels: Towards diffusion models

This is the idea in Song and Ermon (2019) that unlocked the path to
diffusion models.

Let {σi}Li=1 denote the sequence of L noise levels that satisfies σ1
σ2

=

. . . = σL−1

σL
> 1. For each noise level, we define

pσi
data(x) =

∫
pdata(x′)Kσi(x|x′)dx′,

Thepedestrian approach is to train amodel for each noise level, but this
is computationally expensive.

We will instead choose a single network for all noise levels: Noise con-
ditional score networks (NCSN).
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Energy Based Models
Denoising Score Matching with Multiple Levels: Towards diffusion models

Let us denote the DSM loss for a single noise level as

`(θ, σ) = F(pσdata||πθ) = Epσdata

[
1

2
‖∇ log pσdata(X)− sθ(X)‖2

]
.

Let us clarify this for the specific kernel K . Recall that we can write

`(θ, σ) = Ep(x,x′)

[
1

2
‖∇x logKσ(X|X′)− sθ(X, σ)‖2

]
.

where p(x, x′) = pdata(x′)Kσ(x|x′).
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Energy Based Models
Denoising Score Matching with Multiple Levels: Towards diffusion models

The final loss is then

`(θ, σ) = Ep(x,x′)

[
1

2

∥∥∥∥X − X′

σ2
+ sθ(X, σ)

∥∥∥∥2
]
.

It is typical to build the final loss as

`(θ) =
1

L

L∑
i=1

λ(σi)`(θ, σi),

where λ(σi) is a weighting function. Song and Ermon (2019) propose
λ(σ) = σ2. Therefore, the training phase of the algorithm is to find

θ? ∈ argmin
θ

`(θ).
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Denoising Score Matching with Multiple Levels: Towards diffusion models

Algorithm Pseudocode for sampling from EBMs using annealed
Langevin dynamics
1: Input: The trained NCSN sθ?(x, σ), the number of noise levels L,

the step size ε, the number of iterations T
2: X0 = random initialisation.
3: for i = 1, . . . , L do
4: γi = ε

σ2
i

σ2
L
.

5: for t = 1, . . . ,T do
6: Xt+1 = Xt + γisθ?(Xt, σi) +

√
2γiWt+1.

7: end for
8: X0 = XT .
9: end for
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Denoising Score Matching with Multiple Levels: Towards diffusion models

Figure from: https://yang-song.net/blog/2021/score/
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Diffusion Models
Score-based models

Taking this idea to its limit, Song et al., 2020 proposed to use forward-
reverse SDEs of the form:

dXt = −1

2
β(t)Xtdt +

√
β(t)dWt, X0 ∼ p0 = pdata. (7)

and

dXt =
1

2
β(t)Xtdt + β(t)∇ log pt(Xt)dt +

√
β(t)dW̄t, (8)

where XT ∼ pT . Here ∇ log pt is intractable and approximated via
score matching and pt(x) =

∫
pt|0(x|x0)pdata(x0)dx0.
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Score-based models

Image credit: https://yang-song.net/blog/2021/score/
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Diffusion Models
Score-based models

With a similar score matching idea, the score function can be learned
via the minimization

θ? ∈ argminEt∈Unif[0,1]Ex0∼pdataEx∼pt|0(x|x0)[‖∇ log pt|0(x|x0)− sθ(x, t)‖2],

Finally with the approximation

sθ?(x, t) ≈ ∇ log pt(x),

we can implement SGMs by discretizing the reverse process.
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Diffusion Models
Score-based models

To be concrete, after training, we would use

dXt =
1

2
β(t)Xtdt + β(t)sθ?(x, t)dt +

√
β(t)dW̄t, (9)

and its discretizations for generation.
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Diffusion models took the machine learning community by storm by
their impressive sample quality.

I Outperforms earlier generative models (such as GANs, VAEs) in
terms of sample quality.

A big interest in the computational statistics community is to use these
models for inverse problems.

Next: Diffusion models for inverse problems.
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Diffusion Models
for inverse problems

The setup:
I Assume we have a trained model sθ?(x, t) for sampling from pdata.

I Given a likelihood p(y|x), we would like to sample from the pos-
terior p(x|y) ∝ p(y|x)pdata(x).

If we wanted to use an SGM for the posterior, we would need at time t

∇ log pt(xt|y) = ∇ log pt(xt) +∇ log py|t(y|xt),
≈ sθ?(xt, t) +∇ log py|t(y|xt).

where

py|t(y|xt) =
∫

py|0(y|x0)p(x0|xt)dx0.

In other words, if we approximate ∇ log py|t(y|x), then we can use pre-
trained models as priors.
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for inverse problems

The setup:
I Assume we have a trained model sθ?(x, t) for sampling from pdata.
I Given a likelihood p(y|x), we would like to sample from the pos-

terior p(x|y) ∝ p(y|x)pdata(x).
If we wanted to use an SGM for the posterior, we would need at time t
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where
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In other words, if we approximate ∇ log py|t(y|x), then we can use pre-
trained models as priors.
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Diffusion Models
for inverse problems

Let us simplify even more, and assume that we would like to recover
p(x0|y) where

y = Hx0 + ε, ε ∼ N (0, σ2
y Iy).

i.e., we have a linear inverse problem with Gaussian noise:

p(y|x0) = N (y;Hx0, σ2
y Iy).

Recall that we are after approximating

py|t(y|xt) =
∫

p(y|x0)p(x0|xt)dx0.

Given that p(y|x0) is Gaussian, we could compute the integral analyti-
cally if p(x0|xt) were Gaussian.

62



Diffusion Models
Tweedie Moment Projected Diffusions (Boys et al., 2024)

One solution is to use Tweedie’s formula.

Proposition 3 (Tweedie’s formula)

Let m0|t and C0|t be the mean and the covariance of p0|t(x0|xt), respec-
tively. Then given the marginal density pt(xt), the mean is given as

m0|t = E[x0|xt] =
1

√
αt

(xt + vt∇xt log pt(xt)).

Then the covariance C0|t is given by

C0|t = E
[
(x0 −m0|t)(x0 −m0|t)

> | xt
]

=
vt
αt

(Idx + vt∇2 log pt(xt)) =
vt√
αt

∇xtm0|t.
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Diffusion Models
Tweedie Moment Projected Diffusions (Boys et al., 2024)

Proposition 4 (Moment projection)

Let p0|t(x0|xt) be a distribution with meanm0|t and covarianceC0|t . Let
p̂0|t(x0|xt) be the the closest Gaussian in KL divergence to p0|t(x0|xt), i.e.,

p̂0|t(x0|xt) = argmin
q∈Q

KL(p0|t(x0|xt)||q),

whereQ is the family of multivariate Gaussian distributions. Then

p̂0|t(x0|xt) = N (x0;m0|t,C0|t).

This is a well-known moment matching result, see, e.g., Bishop, 2006.

Merging Tweedie andmoment projection propositions leads toTweedie
moment projection:

p0|t(x0|xt) ≈ N
(
x0;m0|t,

vt√
αt

∇xtm0|t

)
, (10)
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Diffusion Models
Tweedie Moment Projected Diffusions (Boys et al., 2024)

Finally usingTweediemoment projection, we can construct the approx-
imation of the gradient of the “smoothed” likelihood:

py|t(y|xt) =
∫

py|0(y|x0)p0|t(x0|xt)dxt

≈ N
(
y;Hm0|t,H

vt√
αt

∇xtm0|tH> + σ2
y Idy

)
which leads to the approximation

f y(xt) := ∇xtm0|tH>(H
vt√
αt

∇xtm0|tH> + σ2
y Idy)

−1(y−Hm0|t)

≈ ∇xt log py|t(y|xt),

Many approximations... This is because things are hard otherwise.
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Diffusion Models
Tweedie Moment Projected Diffusions (Boys et al., 2024)
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∇xtm0|tH> + σ2
y Idy

)
which leads to the approximation
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Diffusion Models
Tweedie Moment Projected Diffusions (Boys et al., 2024)

Note that this framework subsumes the previous ones:
I Denoising posterior sampling (Chung et al., 2022)

mDPS-D
0|t = m0|t and CDPS-D

0|t = 0.

I Pseudo-inverse Guided Diffusion (Song et al., 2023)

mΠG
0|t = m0|t and CΠG

0|t = r2t Idx
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Diffusion Models
Noisy super-resolution

H : Rdx → Rdy project to low dimensional subspace (low resolution)
y = Hx+ ε, ε ∼ N (0, σ2

y I) corrupt with Gaussian noise

Measurement, y is a corrupted image from the FFHQ validation set.
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Diffusion Models
Noisy Inpainting

H : Rdx → Rdy project to low dimensional subspace (e.g., ‘box’ mask)
y = Hx+ ε, ε ∼ N (0, σ2

y I) corrupt with Gaussian noise

Measurement, y is a corrupted image from the FFHQ validation set.
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Diffusion Models
Colouring

H : Rdx → Rdx/3 project to low dim. subspace (from RGB to gray-scale)
y = Hx+ ε, ε ∼ N (0, σ2

y I) corrupt with Gaussian noise

Measurement, y is a corrupted image from the FFHQ validation set.
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