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Recall our basic task:

I Wewant to sample from a distribution π(x) ∝ γ(x) given only the
knowledge of γ(x).

I We want to use these samples to estimate an integral

(ϕ, π) =

∫
ϕ(x)π(x) dx
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Last week, we have covered the basic sampling techniques:

I Uniform random number generation
I Linear congruential generators

I Inversion (inverse transform) sampling
I U ∼ U(0, 1)
I X = F−1(U)

I Rejection sampling
I X′ ∼ q(x)
I Accept X′ with probability γ(X′)/Mq(X′)

The code is also available for these parts:

https://akyildiz.me/mfc-probability-and-stats/Week-6/intro.html
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Now, we will first look atMonte Carlo integration and importance sam-
pling.

4



Importance Sampling
Monte Carlo integration

Another popular approach to compute expectations (ϕ, π) is called im-
portance sampling.

Assume, as in the rejection sampling case, π is absolutely continuous
w.r.t. q, denoted as π � q, meaning q(x) = 0 =⇒ π(x) = 0.

Then, we can write

(ϕ, π) =

∫
ϕ(x)π(dx) =

∫
ϕ(x)

dπ
dq

(x)q(x)dx.

When π and q admit densities,

(ϕ, π) =

∫
ϕ(x)π(x)dx =

∫
ϕ(x)

π(x)
q(x)

q(x)dx.
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Importance Sampling
Monte Carlo integration

Given

(ϕ, π) =

∫
ϕ(x)

π(x)
q(x)

q(x)dx,

we can employ standard Monte Carlo by sampling Xi ∼ q and then
constructing (by setting w = π/q)

(ϕ, π̃N) =
1

N

N∑
i=1

ϕ(Xi)w(Xi),

=
1

N

N∑
i=1

wiϕ(Xi).

where wi = w(Xi). We will call this estimator the importance sampling
(IS) estimator.
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Importance Sampling
Monte Carlo integration

Mini-quiz: Is this estimator unbiased?

Yes.

Eq[(ϕ, π̃
N)] = Eq

[
1

N

N∑
i=1

wiϕ(Xi)

]
,

=
1

N

N∑
i=1

Eq

[
π(Xi)

q(Xi)
ϕ(Xi)

]

=
1

N

N∑
i=1

∫
π(x)
q(x)

ϕ(x)q(x)dx

=

∫
ϕ(x)π(x)dx = (ϕ, π).
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Importance Sampling
Monte Carlo integration

What is the variance?

varq[(ϕ, π̃N)] = varq

[
1

N

N∑
i=1

wiϕ(Xi)

]

=
1

N2
varq

[ N∑
i=1

w(Xi)ϕ(Xi)

]

=
1

N
varq [w(X)ϕ(X)] where X ∼ q(x)

=
1

N

(
Eq
[
w2(X)ϕ2(X)

]
− Eq [w(X)ϕ(X)]2

)
=

1

N
(
Eq
[
w2(X)ϕ2(X)

]
− ϕ̄2

)
.
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Importance Sampling
Monte Carlo integration

Finally, the basic IS estimator satisfies the following Lp bound just like
the perfect Monte Carlo

‖(ϕ, π)− (ϕ, π̃N)‖p ≤
c̃p‖ϕ‖∞√

N
,

where c̃p is a constant depending on p and q.
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Importance Sampling
Self-normalised IS

What if we only have access to γ(x) ∝ π(x)?

Assume γ � q and both abs. cont w.r.t. to the Lebesguemeasure. Then
we can write

(ϕ, π) =

∫
ϕ(x)π(x)dx

=

∫
ϕ(x)γ(x)q(x) q(x)dx∫ γ(x)

q(x) q(x)dx
.

We can then perform the same Monte Carlo integration idea but now
both for the numerator and denominator.
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Importance Sampling
Self-normalised IS (SNIS)

We have

(ϕ, π) =

∫
ϕ(x)π(x)dx

=

∫
ϕ(x)γ(x)q(x) q(x)dx∫ γ(x)

q(x) q(x)dx
.

Define W(x) = γ(x)/q(x) and the SNIS approximation is given as

(ϕ, π) =

∫
ϕ(x)W(x)q(x)dx∫
W(x)q(x)dx

≈
1
N
∑N

i=1 ϕ(Xi)W(Xi)
1
N
∑N

i=j W(Xj)
.

where Xi ∼ q(x). Let us write Wi = W(Xi) and wi = Wi/
∑N

j=1 Wj.
Then the final estimator is

(ϕ, π̃N) =

N∑
i=1

wi.ϕ(Xi)
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Importance Sampling
Self-normalised IS (SNIS)

Mini-quiz: Is this estimator unbiased?

No.

The estimator is a ratio of two unbiased estimators. However, this ratio
is not unbiased.
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Importance Sampling
Self-normalised IS (SNIS)

However, one can prove that

‖(ϕ, π)− (ϕ, π̃N)‖p ≤
c̃p‖ϕ‖∞√

N
,

where c̃p is a constant depending on p and q and ϕ is bounded.
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Importance Sampling
Self-normalised IS (SNIS)

Theorem 1
TheMSE (i.e., set p = 2 and square both sides) is bounded by

E
[(
(ϕ, π)− (ϕ, π̃N)

)2] ≤ 4‖ϕ‖∞ρ

N
,

where

ρ = χ2(π||q) + 1.

Suggests that the discrepancy between π and q controls the MSE.
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Importance Sampling
Self-normalised IS (SNIS), MSE bound

Proof. We first note the following inequalities,

|(ϕ, π)− (ϕ, π̃N)| =
∣∣∣∣(ϕW, q)
(W, q)

− (ϕW, qN)
(W, qN)

∣∣∣∣
≤
∣∣(ϕW, q)− (ϕW, qN)

∣∣
|(W, q)|

+ |(ϕW, qN)|
∣∣∣∣ 1

(W, q)
− 1

(W, qN)

∣∣∣∣
=

∣∣(ϕW, q)− (ϕW, qN)
∣∣

|(W, q)|
+ ‖ϕ‖∞|(W, qN)|

∣∣∣∣(W, qN)− (W, q)
(W, q)(W, qN)

∣∣∣∣
=

∣∣(ϕW, q)− (ϕW, qN)
∣∣

(W, q)
+

‖ϕ‖∞|(W, qN)− (W, q)|
(W, q)

.
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We take squares of both sides and apply the inequality (a+b)2 ≤ 2(a2+
b2) to further bound the rhs,

· · · ≤ 2

∣∣(ϕW, q)− (ϕW, qN)
∣∣2

(W, q)2
+ 2

‖ϕ‖2∞|(W, qN)− (W, q)|2

(W, q)2

We can now take the expectation of both sides,

E
[(
(ϕ, π)− (ϕ, π̃N)

)2] ≤2E
[(
(ϕW, q)− (ϕW, qN)

)2]
(W, q)2

+

2‖ϕ‖2∞E
[(
(W, qN)− (W, q)

)2]
(W, q)2

.

Note that, both terms in the right hand side are perfect Monte Carlo
estimates of the integrals.
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Bounding the MSE of these integrals yields

· · · ≤ 2

N
(ϕ2W2, q)− (ϕW, q)2

(W, q)2
+

2‖ϕ‖2∞
N

(W2, q)− (W, q)2

(W, q)2
,

≤ 2‖ϕ‖2∞
N

(W2, q)
(W, q)2

+
2‖ϕ‖2∞

N
(W2, q)− (W, q)2

(W, q)2
.

Therefore, we can straightforwardly write,

E
[(
(ϕ, π)− (ϕ, π̃N)

)2] ≤ 4‖ϕ‖2∞
(W, q)2

(W2, q)
N

.
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E
[(
(ϕ, π)− (ϕ, π̃N)

)2] ≤ 4‖ϕ‖2∞
(W, q)2

(W2, q)
N

.

Now it remains to show the relation of the bound toχ2 divergence. Note
that,

(W2, q)
(W, q)2

=

∫ Π2(x)
q2(x) q(x)dx(∫ Π(x)
q(x) q(x)dx

)2
=

Z2
∫ π2(x)

q2(x) q(x)dx

Z2
(∫

πdx
)2

= Eq

[
π2(X)
q2(X)

]
:= ρ.

Note that ρ is not exactlyχ2 divergence, which is defined as ρ−1. Plug-
ging everything into our bound, we have the result,

E
[(
(ϕ, π)− (ϕ, πN)

)2] ≤4‖ϕ‖2∞ρ

N
.
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The curse of dimensionality
Rejection sampling as d → ∞

Let us exemplify a few issues. Consider the following target distribution
on Rd :

π(x) =
1

σd
π(2π)

d/2 exp
(
− 1

2σ2
π

‖x‖2
)

and the following proposal distribution:

q(x) =
1

σd
q (2π)

d/2 exp

(
− 1

2σ2
q
‖x‖2

)

where σq > σπ .
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The curse of dimensionality
Rejection sampling as d → ∞

We know that the acceptance probability is

α(x) =
π(x)
Mq(x)

.

Mini-quiz: How do we choose M?

M = sup
x∈Rd

π(x)
q(x)

.

Then, we can write

M = sup
x∈Rd

σq

σπ
exp

(
− 1

2σ2
π

‖x‖2 + 1

2σ2
q
‖x‖2

)

=
σd
q

σd
π

sup
x∈Rd

exp

(
σ2
π − σ2

q

2σ2
qσ

2
π

‖x‖2
)

=
σd
q

σd
π

.
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The curse of dimensionality
Rejection sampling as d → ∞

Mini-quiz: Given M, what is the acceptance rate?

â =
1

M
=

σd
π

σd
q
.

This means that as d → ∞, given σq > σπ , â → 0.

The curse of dimensionality for rejection samplers.
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â =
1

M
=

σd
π

σd
q
.

This means that as d → ∞, given σq > σπ , â → 0.
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The curse of dimensionality
Importance sampling as d → ∞

In standard Monte Carlo methods course, you would hear things like

I Monte Carlo estimators are independent of the dimension of the
problem.

I Importance sampling estimators are also independent of the di-
mension of the problem.

These are false statements.

Importance sampling estimators also suffer badly as d → ∞ (Li et al.,
2005).
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This motivates us to move on to our next topic: Markov chain Monte
Carlo methods.
I In both high-dimensional sampling andmore generally generative

modelling, techniques based on MCMC and similar ideas are the
state-of-the-art.

I Of course, there are many other techniques that are used in prac-
tice, but MCMC is the most popular one.

Next up: Introducing MCMC.
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Why Markov chains?
Since we want i.i.d samples

Let K be a Markov kernel. Let (X1,X2, . . .) be a sequence of random
variables such that Xn+1 ∼ K(Xn, ·).

Theorem 1
If K is an irreducible, π-invariant kernel, then for any integrable function
ϕ

lim
T→∞

1

T

T∑
i=1

ϕ(Xi) =

∫
ϕ(x)π(x)dx = (ϕ, π),

almost surely, for almost all initial points x0.

Therefore, we can use these samples to estimate our integrals.
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Why Markov chains?
Since we want i.i.d samples

Theorem 2
If K is irreducible, aperiodic, and π-invariant, then

lim
T→∞

∫
X
|KT(y|x)− π(y)|dy = 0,

for π-almost all starting values x.
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Markov chain Monte Carlo
How to design good kernels?

We will first look at a surprisingly simple approach: the Metropolis-
Hastings algorithm.

This approach relies on the following idea:
I We can sample from a proposal q(x|x′) (that is a Markov kernel)
I We can use accept/reject

We can design the process so that the stationary distribution of the
chain is the target distribution.

This is however very different from the rejection sampling approach.
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Metropolis-Hastings
A first look

Consider the following method:
I Sample X′ ∼ q(x′|Xn−1)

I Set Xn = X′ with probability

α(X′|Xn−1) = min
{
1,

π(X′)q(Xn−1|X′)

π(Xn−1)q(X′|Xn−1)

}
.

I Otherwise, set Xn = Xn−1.

Note the last step: we discard the sample X′ if rejected BUT set Xn =
Xn−1.

27



Metropolis-Hastings
A first look

Consider the following method:
I Sample X′ ∼ q(x′|Xn−1)

I Set Xn = X′ with probability

α(X′|Xn−1) = min
{
1,

π(X′)q(Xn−1|X′)

π(Xn−1)q(X′|Xn−1)

}
.

I Otherwise, set Xn = Xn−1.
Note the last step: we discard the sample X′ if rejected BUT set Xn =
Xn−1.

27



Metropolis-Hastings
Metropolis-Hastings Algorithm

The ratio

r(x, x′) =
π(x′)q(x|x′)
π(x)q(x′|x)

,

is called acceptance ratio.
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Metropolis-Hastings
Metropolis-Hastings Algorithm

The MH algorithm automatically gives us a kernel.

How to prove that the stationary distribution is the target distribution?
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Metropolis-Hastings
Metropolis-Hastings Algorithm

Let us figure out the kernel.

Let us say, we have the sample from the proposal x′. Fixing this sample,
the acceptance step samples from the mixture (intuitively):

α(x′|x)δx′(y) + (1− α(x′|x))δx(y).

To get the full kernel, we need to integrate over x′:

K(y|x) =
∫

q(x′|x)
(
α(x′|x)δx′(y) + (1− α(x′|x))δx(y)

)
dx′,

= α(y|x)q(y|x) + (1− a(x))δx(y)

where

a(x) =
∫

α(x′|x)q(x′|x)dx′.
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Metropolis-Hastings
Metropolis-Hastings Algorithm

More intuition in terms of xn and xn−1:
I What is the probability of being at xn−1 and getting accepted?

a(xn−1) =

∫
X
α(x|xn−1)q(x|xn−1)dx.

I Therefore, the probability of being at xn−1 and getting rejected is
1− a(xn−1).

We can see that the kernel is

K(xn|xn−1) = α(xn|xn−1)q(xn|xn−1) + (1− a(xn−1))δxn−1(xn).
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Metropolis-Hastings
Metropolis-Hastings Algorithm: Detailed Balance

We can now prove that the kernel satisfies the detailed balance condi-
tion:

K(x′|x)π(x) = K(x|x′)π(x′).
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Metropolis-Hastings
Metropolis-Hastings Algorithm: Detailed Balance

π(x)K(x′|x) = π(x)q(x′|x)α(x′, x) + π(x)(1− a(x))δx(x′)

= π(x)q(x′|x)min
{
1,

π(x′)q(x|x′)
π(x)q(x′|x)

}
+ π(x)(1− a(x))δx(x′)

= min
{
π(x)q(x′|x), π(x′)q(x|x′)

}
+ π(x)(1− a(x))δx(x′)

= min
{
π(x)q(x′|x)
π(x′)q(x|x′)

, 1

}
π(x′)q(x|x′) + π(x′)(1− a(x′))δx′(x)

= K(x|x′)π(x′).
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Metropolis-Hastings
Unnormalised density

Assume we are given an unnormalised density to sample γ where

π(x) =
γ(x)
Z

,

where Z is the normalisation constant.
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Metropolis-Hastings
Unnormalised density

I Sample X′ ∼ q(x′|Xn−1)

I Set Xn = X′ with probability

α(X′|Xn−1) = min
{
1,

γ(X′)q(Xn−1|X′)

γ(Xn−1)q(X′|Xn−1)

}
.

I Otherwise, set Xn = Xn−1.
as the normalising constants of π would cancel out.
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Metropolis-Hastings
How do we choose proposals?

I Independent proposals
I Symmetric (random walk) proposals
I Gradient-based proposals
I Adaptive proposals
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Metropolis-Hastings
Independent proposals

Choose the proposal q(x) independently of the current stateXn−1. Leads
to
I X′ ∼ q(x′)
I Accept with probability

α(X′|Xn−1) = min
{
1,

π(X′)q(Xn−1)

π(Xn−1)q(X′)

}
.

I Otherwise, set Xn = Xn−1.

37



Metropolis-Hastings
Independent proposals

Let us say

π(x) = N (x;µ, σ2)

For the example, assume we want to use MH to sample from it. Choose
a proposal

q(x) = N (x;µq, σ
2
q).

How to compute the acceptance ratio?
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Metropolis-Hastings
Independent proposals

r(x, x′) =
π(x′)q(x)
π(x)q(x′)

=
N (x′;µ, σ2)N (x;µq, σ

2
q)

N (x;µ, σ2)N (x′;µq, σ2
q)

=

1√
2πσ2

exp
(
− (x′−µ)2

2σ2

)
1√
2πσ2

q
exp

(
− (x−µq)2

2σ2
q

)
1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
1√
2πσ2

q
exp

(
− (x′−µq)2

2σ2
q

)

=
exp

(
− (x′−µ)2

2σ2

)
exp

(
− (x−µq)2

2σ2
q

)
exp

(
− (x−µ)2

2σ2

)
exp

(
− (x′−µq)2

2σ2
q

)
= e

(
− 1

2σ2

[
(x′−µ)2−(x−µ)2

])
e

(
− 1

2σ2q

[
(x−µq)2−(x′−µq)2

])
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Metropolis-Hastings
Random walk proposal

We can choose:

q(x′|x) = N (x′; x, σ2
q)

The proposal looks at where we are and take a random step (random
walk).

Note that q(x′|x) is symmetric, i.e. q(x|x′) = q(x′|x).
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Metropolis-Hastings
Random walk proposal

We can choose:

q(x′|x) = N (x′; x, σ2
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40



Metropolis-Hastings
Random walk proposal

Acceptance ratio:

r(x, x′) =
π(x′)q(x|x′)
π(x)q(x′|x)

=
π(x′)
π(x)

,

=
N (x′;µ, σ2)

N (x;µ, σ2)

= e
(
− 1

2σ2

[
(x′−µ)2−(x−µ)2

])
.
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Metropolis-Hastings
Random walk proposal

Set a burnin period:
I Run the sampler for fixed number of iterations and discard the first

n samples.
I This accounts for the convergence to the stationary measure.
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Metropolis-Hastings
Gradient-based proposal

We can inform the proposal by using the gradient of the target distribu-
tion.

q(x′|x) = N (x′; x + γ∇ logπ(x), 2γI),

This tends to behave really well.

This approach is calledMetropolis adjusted Langevin algorithm (MALA).
(more on these later)
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Gradient-based proposal
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Metropolis-Hastings
Caveats, design rules

I One has to be careful that p/q < ∞ (while no theoretical reason,
the performance tends to be quite bad).

I The proposal should attain a balance of acceptance rate and effi-
ciency.

I Too high acceptance rate is not necessarily good: You might be
taking too small steps and getting stuck in some regions
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Metropolis-Hastings
The banana density

Consider the 2D density

p(x, y) ∝ exp
(
−x2

10
− y4

10
− 2(y − x2)2

)
.

Assume we would like to sample from it.
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Metropolis-Hastings
The banana density
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Figure: The banana density (unnormalised)
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Metropolis-Hastings
The banana density

We have

γ(x, y) = exp
(
−x2

10
− y4

10
− 2(y − x2)2

)
.

and let us choose two alternative proposals
I The random walk proposal:

q(x′, y′|x, y) = N (x′; x, σ2
q)N (y′; y, σ2

q).

I and the gradient-based proposal (MALA):

q(x′, y′|x, y) = N (z; z + γ∇ log γ(z),
√
2γI).

where z = (x, y) and γ is a step size.
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We have seen Metropolis-Hastings sampler.

I Unfortunately, it may not be very efficient.
I Acceptance ratios are very tricky to compute in a variety of set-

tings:
I High-dimensional problems
I Complex models
I Large datasets

Next week, we will look at Langevin MCMC methods.
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