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State-space models
problem definition

y1 y2 . . .

x1x0 x2 . . . xt

yt

The conditional independence structure of a state-space model.

(xt)t∈N+ : hidden signal process, (yt)t∈N+ the observation process.

x0 ∼ π0(dx0), (prior distribution)
xt|xt−1 ∼ τt(dxt|xt−1), (transition model)

yt|xt ∼ gt(yt|xt), (likelihood)

xt ∈ X where X is the state-space. We use: gt(xt) = gt(yt|xt).
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State-space models
Algorithmic principle

We are interested in estimating expectations,

(ϕ, πt) =

∫
ϕ(xt)πt(xt|y1:t)dxt =

∫
ϕ(xt)πt(dxt),

sequentially as new data arrives.

y1 y2 . . .

x1x0 x2 . . . xt

yt

Algorithm:
Predict

ξt(dxt) =
∫

πt−1(dxt−1)τt(dxt |xt−1)

Update

πt(dxt) = ξt(dxt)
gt(yt |xt)

p(yt |y1:t−1)
.
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Particle filters
Recap

A general algorithm to estimate expectations of any test function ϕ(xt)
given y1:t .
I Sampling: draw

x̄(i)t ∼ τt(dxt|x(i)t−1)

independently for every i = 1, . . . ,N .
I Weighting: compute

w(i)
t = gt(x̄

(i)
t )/Z̄N

t

for every i = 1, . . . ,N , where Z̄N
t =

∑N
i=1 gt(x̄

(i)
t ).

I Resampling: draw independently,

x(i)t ∼ π̃t(dx) :=
∑
i
w(i)
t δx̄(i)t

(dx) for i = 1, ...,N.

πN
t−1 →︸︷︷︸

sampling

ξNt →︸︷︷︸
weighting

π̃N
t →︸︷︷︸

resampling

πN
t .
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Particle filters
Bootstrap particle filter: Example I

Consider the following state-space model

x0 ∼ N (x0; 0, I),
xt|xt−1 ∼ N (xt;Axt−1,Q),

yt|xt ∼ N (yt;Hxt,R).

where

A =


1 0 κ 0
0 1 0 κ
0 0 0.99 0
0 0 0 0.99

 and Q =


κ3

3 0 κ2

2 0

0 κ3

3 0 κ2

2
κ2

2 0 κ 0

0 κ2

2 0 κ


and

H =

(
1 0 0 0
0 1 0 0

)
and R = r

(
1 0
0 1

)
,

where r = 5.
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Particle filters
Bootstrap particle filter: Example I

Particle filter for this model: Given x(i)1:t−1 for i = 1, . . . ,N ,
I Sample: x̄(i)t ∼ N (xt;Ax

(i)
t−1,Q),

I Compute weights:

W(i)
t = N (yt;Hx̄(i)t ,R),

Normalise: w(i)
t = W(i)

t /
∑N

i=1 W(i)
t

I Report

πN
t (dxt) =

N∑
i=1

w(i)
t δx̄(i)t

(dxt).

I Resample:

x(i)t ∼
N∑
i=1

w(i)
t δx̄(i)t

(dxt).
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Particle filters
Bootstrap particle filter: Example II

Let us look the following Lorenz 63 model

x1,t = x1,t−1 − γs(x1,t − x2,t) +
√
γξ1,t,

x2,t = x2,t−1 + γ(rx1,t − x2,t − x1,tx3,t) +
√
γξ2,t,

x3,t = x3,t−1 + γ(x1,tx2,t − bx3,t) +
√
γξ3,t,

where γ = 0.01, r = 28, b = 8/3, s = 10, and ξ1,t, ξ2,t, ξ3,t ∼ N (0, 1)
are independent Gaussian random variables. The observation model is
given by

yt = [1, 0, 0]xt + ηt,

where ηt ∼ N (0, σ2
y ) is a Gaussian random variable.
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Bootstrap particle filter
Marginal likelihoods

Another quantity BPF can estimate is the marginal likelihood:

p(y1:t) =
∫

p(y1:t, x0:t)dx0:t.

This quantity is useful for model selection and model comparison.
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Bootstrap particle filter
Marginal likelihoods

Recall tbat we have tbe factorisation:

p(y1:t) =
t∏

k=1

p(yk|y1:k−1).

where

p(yt|y1:t−1) =

∫
g(yt|xt)ξt(xt|y1:t−1)dxt.

Recall that we can obtain the approximation of ξt(xt|y1:t−1) by the par-
ticle filter using predictive particles x̄(i)t ∼ τ(xt|x(i)t−1) as

pNt (dxt|y1:t−1) =
1

N

N∑
i=1

δx̄(i)t
(dxt).
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Bootstrap particle filter
Marginal likelihoods

Therefore, given

pNt (dxt|y1:t−1) =
1

N

N∑
i=1

δx̄(i)t
(dxt),

we get

pN(yt|y1:t−1) =
1

N

N∑
i=1

g(yt|x̄(i)t ).

As a result, we can approximate

pN(y1:t) =
t∏

k=1

pN(yk|y1:k−1).
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Bootstrap particle filter
Marginal likelihoods

Remarkably, this estimate is unbiased:

E[pN(y1:t)] = p(y1:t).
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Bootstrap particle filter
Convergence bounds

For general (bounded) test functionsϕ(xt) andfilteringmeasuresπN
t (dxt|y1:t),

we have the following Lp bound

‖(ϕ, πN
t )− (ϕ, πt)‖p ≤

ct,p‖ϕ‖∞√
N

.
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We have seen inference for

y1 y2 . . .

x1x0 x2 . . . xt

yt

What if the model has parameters θ?

y1 y2 · · · yk

x1x0 x2 · · · xk

θ
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Problem definition
Recap – the model, the notation

y1 y2 · · · yk

x1x0 x2 · · · xk

θ

We are given the model

x0 ∼ µθ(x0),
xt|xt−1 ∼ τθ(xt|xt−1),

yt|xt ∼ gθ(yt|xt).

We aim at estimating θ given y1:T .
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Problem definition
Marginal likelihood maximization

We are interested in solving the global optimization problem

θ? = argmax
θ∈Θ

log pθ(y1:T),

where

pθ(y1:T) =
∫

pθ(x0:T , y1:T)dx0:T .

In this lecture, we are interested in gradient-based approaches for max-
imization of log pθ(y1:T).
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State-space models
The smoothing problem

Wehave been looking at the filtering problem, i.e., estimatingπt(xt|y1:t).

What if we want to estimate πt(xt|y1:T) for T > t?

This is called the smoothing problem. These methods are usually imple-
mented backwards in time.
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State-space models
The smoothing problem

We have smoothing recursions

π(xt+1|y1:t) =
∫

τ(xt+1|xt)π(xt|y1:t)dxt,

π(xt|y1:T) = π(xt|y1:t)
∫

τ(xt+1|xt)π(xt+1|y1:T)
π(xt+1|y1:t)

dxt+1.
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State-space models
The smoothing problem

Proof: Let us notice

p(xt|xt+1, y1:T) = p(xt|xt+1, y1:t),

=
p(xt, xt+1|y1:t)
p(xt+1|y1:t)

,

=
π(xt|y1:t)τ(xt+1|xt)

π(xt+1|y1:t)
,

where the last equality follows from theMarkov property.

Nowwe con-
struct the joint

p(xt+1, xt|y1:T) = p(xt|xt+1, y1:T)p(xt+1|y1:T),

=
π(xt|y1:t)τ(xt+1|xt)

π(xt+1|y1:t)
π(xt+1|y1:T).

By integrating out xt+1, the result follows.
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The smoothing problem

For the maximum-likelihood parameter estimation methods, we often
require an approximation of the smoothing distribution πθ(x0:T |y1:T).

Wait... Can’t we obtain it via the joint sampler we described in the fil-
tering lecture?

Yes, but...
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Particle filters
Sequential Importance Sampling - Resampling (SISR)

I Sample x(i)0 ∼ q(x0) for i = 1, . . . ,N .
I For t ≥ 1

I Sample: x̄(i)t ∼ q(xt |x(i)t−1),
I Compute weights:

W(i)
t =

τ(x̄(i)t |x(i)t−1)g(yt |x̄
(i)
t )

q(x̄(i)t |x(i)t−1)
.

Normalise: w(i)
t = W(i)

t /
∑N

i=1 W(i)
t

I Report

π̃N
t (dx0:t) =

N∑
i=1

w(i)
t δx̄(i)0:t

(dx0:t).

I Resample:

x(i)t ∼
N∑
i=1

w(i)
t δx̄(i)t

(dxt).
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The smoothing problem
Another look

Recall how we do it: For t ≥ 2,
I Sample:

x̄(i)t ∼ qt(xt|x(i)t−1),

I Weight

w(i)
t ∝

τθ(x̄
(i)
t |x(i)t−1)gθ(yt|x̄

(i)
t )

qt(x̄
(i)
t |x(i)t−1)

,

I Resample: Choose a(i)t where P(a(i)t = j) ∝ wj
t and set

x(i)1:t = (xa
(i)
t

1:t−1, x̄
a(i)t
t )

The entire state history is resampled! What can go wrong?
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The smoothing problem
Path degeneracy

If we do resampling every step (which is crucial), then we can only do
it if we track the genealogy backwards. (?)
I After every resample, we throw away the killed particles’ ancestors

and replace them with the survivors’ ancestors.
Path degeneracy is a big issue.

Figure: Source: Svensson, Andreas,Thomas B. Schön, andManonKok. ”Non-
linear state space smoothing using the conditional particle filter.” (2015).
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The smoothing problem
An alternative: Forward filtering backward (something)

Instead, we can consider the following decomposition

πθ(x0:T |y1:T) = πθ(xT |y0:T)
T−1∏
k=0

πθ(xk|y0:T , xk+1),

= πθ(xT |y0:T)
T−1∏
k=0

πθ(xk|y0:k, xk+1). (1)

where

πθ(xt|xt+1, y1:t) =
πθ(xt, xt+1|y1:t)
ξθ(xt+1|y1:t)

, (2)

=
τθ(xt+1|xt)πθ(xt|y1:t)

ξθ(xt+1|y1:t)
. (3)
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The smoothing problem
An alternative: Forward filtering backward sampling

πθ(x0:T |y1:T) = πθ(xT |y0:T)
T−1∏
k=0

πθ(xk|y0:k, xk+1).

This recursion suggests sampling πθ(xT |y1:T) from the filter and sample
backwards from πθ(xk|y0:k, xk+1) by conditioning on the xk+1. This
would provide us a sample x(i)0:T from the smoother.

We approximate the backward distribution as

πθ(dxt|xt+1, y1:t) =
τθ(xt+1|xt)πN

θ (dxt|y1:t)
ξNθ (xt+1|y1:t)

.

where πN
θ and ξNθ approximate filtering and predictive measures (see

next slide).
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The smoothing problem
An alternative: Forward filtering backward sampling

πθ(dxt|xt+1, y1:t) =
τθ(xt+1|xt)πN

θ (dxt|y1:t)∫
τθ(xt+1|xt)πN

θ (dxt|y1:t)

Plugging πN
θ (dxt|y1:t) =

∑N
i=1 w(i)

t δx̄(i)t
(dxt) gives

πN
θ (dxt|xt+1, y1:t) =

∑N
i=1 w(i)

t τθ(xt+1|x̄(i)t )δx̄(i)t
(dxt)∑N

i=1 w(i)
t τθ(xt+1|x̄(i)t )

(4)
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The smoothing problem
An alternative: Forward filtering backward sampling

If we use the weighted approximation then the FFBSa is given by
I At time T , sample x̃T ∼ πN

θ (dxT |y1:T),
I t from T − 1 to 1:

I Compute smoothing weights

w(i)
t+1|t ∝ w(i)

t τθ(x̃t+1|x̄(i)t ).

I Then sample

x̃t ∼
N∑
i=1

w(i)
t+1|tδx̄(i)t

(dxt).

The sample x̃0:T is a sample from the smoother. However, it is just a
single sample!

Do the same N times. Reduces path degeneracy, but O(N2(T + 1)).
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The smoothing problem
Another alternative: Forward filtering backward smoothing

Recall the original smoothing recursions we discussed:

πθ(xt|y1:T) =
∫

πθ(xt, xt+1|y1:T)dxt+1,

=

∫
πθ(xt|xt+1, y1:t)πθ(xt+1|y1:T)dxt+1,

=

∫
τθ(xt+1|xt)πθ(xt|y1:t)

ξθ(xt+1|y1:t)
πθ(xt+1|y1:T)dxt+1.

Can we use these to build a particle approximation? Recall measure
theoretic form

πθ(dxt|y1:T) = πθ(dxt|y1:t)
∫

τθ(xt+1|xt)
ξθ(xt+1|y1:t)

πθ(xt+1|y1:T)dxt+1.
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The smoothing problem
Another alternative: Forward filtering backward smoothing

Backward recursion

πθ(dxt|y1:T) = πθ(dxt|y1:t)
∫

τθ(xt+1|xt)∫
τθ(xt+1|xt)πθ(dxt|y1:t)

πθ(dxt+1|y1:T).

This means that we can use approximations {πN
θ (dxt|y1:t)}Tt=1 again to

recursively update the smoother backwards in time and construct the
smoother update

πθ(dxt+1|y1:T) 7→ πθ(dxt|y1:T).
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The smoothing problem
Another alternative: Forward filtering backward smoothing

Assume we have an approximation

πN
θ (dxt+1|y1:T) =

N∑
i=1

w(i)
t+1|Tδx̄(i)t+1

(dxt+1).

where w(i)
T|T = w(i)

T . We can use the recursion in the previous slide to
obtain

πθ(dxt|y1:T) =
N∑
i=1

w(i)
t|Tδx̄(i)t

(dxt),

where

w(i)
t|T = w(i)

t

N∑
j=1

w(j)
t+1|Tτθ(x̄

(j)
t+1|x̄

(i)
t )∑N

l=1 w(l)
t τθ(x̄

(j)
t+1|x̄

(l)
t )
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The parameter estimation problem
Marginal likelihood maximization

Recall we are interested in solving the global optimization problem

θ? = argmax
θ∈Θ

log pθ(y1:T),

where

pθ(y1:T) =
∫

pθ(x0:T , y1:T)dx0:T .

30



The parameter estimation problem
Marginal likelihood maximization

A generic way to do this would be to run

θi+1 = θi + γ∇ log pθ(y1:T).

I Well understood gradient scheme,
I Can be also replaced by an adaptive gradient scheme. (Adam, your

favourite one...)
However, the gradient is not computable...
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The parameter estimation problem
How to compute the gradient?

For this maximization, we will be interested in computing

∇θ log pθ(y1:T).

For this, we use Fisher’s identity.
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The parameter estimation problem
How to compute the gradient?

Proposition 1 (Fisher’s identity)

Under appropriate regularity conditions, we have

∇θ log pθ(y1:T) =
∫

∇θ log pθ(x0:T , y1:T)pθ(x0:T |y1:T)dx0:T .
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The parameter estimation problem
How to compute the gradient?

Proof.
Let us note that

∇θ log pθ(y1:T) =
∇θpθ(y1:T)
pθ(y1:T)

,

=
∇
∫
pθ(x0:T , y1:T)dx0:T

pθ(y1:T)
,

=

∫
∇pθ(x0:T , y1:T)

pθ(y1:T)
dx0:T ,

=

∫
∇ log pθ(x0:T , y1:T)pθ(x0:T , y1:T)

pθ(y1:T)
dx0:T ,

=

∫
∇ log pθ(x0:T , y1:T)πθ(x0:T |y1:T)dx0:T .

�
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The parameter estimation problem
How to compute the gradient?

Given Fisher’s identity,

∇θ log pθ(y1:T) =
∫

∇θ log pθ(x0:T , y1:T)πθ(x0:T |y1:T)dx0:T .

and

log pθ(x0:T , y1:T) = logµθ(x0) +
T∑

t=1

log τθ(xt|xt−1) +

T∑
t=1

log gθ(yt|xt),
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The parameter estimation problem
How to compute the gradient?

Given

log pθ(x0:T , y1:T) = logµθ(x0) +
T∑

t=1

log τθ(xt|xt−1) +

T∑
t=1

log gθ(yt|xt),

Some shortcut notation:

sθ1(x−1, x0) = sθ0(x0) = ∇ logµθ(x0),
sθ,t(xt−1, xt) = ∇ log gθ(yt|xt) +∇ log τθ(xt|xt−1).
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The parameter estimation problem
How to compute the gradient?

So finally the gradient can be written as an expectation

∇θ log pθ(y1:T) =
∫

∇θ log pθ(x0:T , y1:T)pθ(x0:T |y1:T)dx0:T .

We identify the marginal likelihood as an additive functional

∇θ log pθ(y1:T) = SθT(x1:T),

=

∫
XT+1

( T∑
t=1

sθt (xt−1, xt)

)
πθ(x0:T |y1:T)dx0:T .
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The parameter estimation problem
How to compute the gradient?

But how do we compute? Recall

sθt (xt−1, xt) = ∇ log gθ(yt|xt) +∇ log τθ(xt|xt−1).

TheBPFwith parameter gradient computation. Fix θ and assume {X(i)
1:t−1, α

(i)
t−1}

are given.
I Sample: x̄(i)t ∼ τθ(xt|x

(i)
t−1).

I Weight w(i)
t ∝ g(yt|x̄(i)t ).

I Resample:

x(i)t ∼
N∑
i=1

w(i)
t δx̄(i)t

(dxt),

i.e. x(i)t = x̄a
(i)
t

t with P(a(i)t = j) = wj
t and construct the estimate

α
(i)
t = α

a(i)t
t−1 + sθt (x

a(i)t
t−1, x

(i)
t )
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The parameter estimation problem
How to compute the gradient?

Then

Sθ,NT =
1

N

N∑
i=1

α
(i)
T

However, as this naive “forward smoother”O(N) iteration complexity)
suffers from path degeneracy as we discussed before, therefore the esti-
mates will not be reliable.

Use FFBS described before however the computation won’t be recursive
(it is offline) and O(N2) complexity - but has better properties.
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y1 y2 · · · yk

x1x0 x2 · · · xk

θ

We are given the model

x0 ∼ µθ(x0),
xt|xt−1 ∼ τθ(xt|xt−1),

yt|xt ∼ gθ(yt|xt).

We looked at estimating θ given y1:T .
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I We have seen maximum likelihood approaches

θ? ∈ argmax
θ∈Θ

log p(y1:T |θ).

where

p(y1:T |θ) =
∫

p(y1:T , x0:T |θ)dx0:T .

We will now look at the Bayesian approach to this problem.
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Problem definition
Recap – the model, the notation

y1 y2 · · · yk

x1x0 x2 · · · xk

θ

We are given the model

θ ∼ p(θ),
x0 ∼ µθ(x0),

xt|xt−1 ∼ τ(xt|xt−1, θ),

yt|xt ∼ g(yt|xt, θ).

We aim at sampling from p(θ|y1:T).
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State-space models
Recall: Algorithmic principle

We are interested in estimating expectations,

(ϕ, πt) =

∫
ϕ(xt)πt(xt|y1:t)dxt =

∫
ϕ(xt)πt(dxt),

sequentially as new data arrives.

y1 y2 . . .

x1x0 x2 . . . xt

yt

Algorithm:
Predict

ξt(dxt) =
∫

πt−1(dxt−1)τt(dxt |xt−1)

Update

πt(dxt) = ξt(dxt)
gt(yt |xt)

p(yt |y1:t−1)
.

43



Particle filters
Reminder

A general algorithm to estimate expectations of any test function ϕ(xt)
given y1:t .
I Sampling: draw

x̄(i)t ∼ τθ(dxt|x
(i)
t−1)

independently for every i = 1, . . . ,N .
I Weighting: compute

w(i)
t = gθ(x̄

(i)
t )/Z̄N

t

for every i = 1, . . . ,N , where Z̄N
t =

∑N
i=1 gθ(x̄

(i)
t ).

I Resampling: draw independently,

x(i)t ∼ π̃t(dx) :=
∑
i
w(i)
t δx̄(i)t

(dx) for i = 1, ...,N.

πN
t−1 →︸︷︷︸

sampling

ξNt →︸︷︷︸
weighting

π̃N
t →︸︷︷︸

resampling

πN
t .
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Bootstrap particle filter
Marginal likelihoods

Another quantity BPF can estimate is the marginal likelihood:

p(y1:t|θ) =
∫

p(y1:t, x0:t|θ)dx0:t.

This quantity is useful for model selection and model comparison.
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Bootstrap particle filter
Marginal likelihoods

Recall that we have tbe factorisation:

p(y1:t|θ) =
t∏

k=1

p(yk|y1:k−1, θ).

where

p(yt|y1:t−1, θ) =

∫
g(yt|xt, θ)ξ(xt|y1:t−1, θ)dxt.

Recall that we can obtain the approximation of ξ(xt|y1:t−1, θ) by the
particle filter using predictive particles x̄(i)t ∼ τ(xt|x(i)t−1, θ) as

pN(dxt|y1:t−1, θ) =
1

N

N∑
i=1

δx̄(i)t
(dxt).
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Bootstrap particle filter
Marginal likelihoods

Therefore, given

pNθ (dxt|y1:t−1, θ) =
1

N

N∑
i=1

δx̄(i)t
(dxt),

we get

pN(yt|y1:t−1, θ) =
1

N

N∑
i=1

g(yt|x̄(i)t , θ).

As a result, we can approximate

pN(y1:t|θ) =
t∏

k=1

pN(yk|y1:k−1, θ).
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Bootstrap particle filter
Marginal likelihoods

Remarkably, this estimate is unbiased:

E[pN(y1:t|θ)] = p(y1:t|θ),

for every fixed θ.
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Parameter inference
A basic approach based on Metropolis-Hastings

Let us assume that we would like to sample from p(θ|y1:t)

I We would normally use the factorisation

p(θ|y1:t) ∝ p(y1:t|θ)p(θ).

I Based on this, we could design a Metropolis-Hastings algorithm
(with any proposal).
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Parameter inference
A basic approach based on Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
I Given θ(i), sample θ′ ∼ q(θ′|θ(i)).

I Compute the acceptance ratio

r(θ(i), θ′) =
p(y1:t|θ′)p(θ′)q(θ(i)|θ′)

p(y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

I Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) = θ′.
I Otherwise, set θ(i+1) = θ(i).

Can this be applicable for state-space models?
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Parameter inference
A basic approach based on Metropolis-Hastings

The issue:
I We do not know p(y1:t|θ) as this is an integral over x0:t :

p(y1:t|θ) =
∫

p(y1:t, x0:t|θ)dx0:t.

I We can approximate this integral using the particle filter:

pN(y1:t|θ) =
1

N

N∑
i=1

g(yt|x̄(i)t , θ).

I Remarkably, plugging in unbiased estimates inMetropolis-Hastings
ratios preserves the stationary measure (Andrieu et al., 2010).
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Parameter inference
particle Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
I Given θ(i), sample θ′ ∼ q(θ′|θ(i)).

I Compute the acceptance ratio

r(θ(i), θ′) =
pN(y1:t|θ′)p(θ′)q(θ(i)|θ′)

pN(y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

I Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) = θ′.
I Otherwise, set θ(i+1) = θ(i).

This is called the particle Metropolis-Hastings algorithm.
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Parameter inference
particle Metropolis-Hastings

A few drawbacks of this approach:
I The algorithm is not very efficient as it requires a large number of

particles to obtain a good approximation of p(y1:t|θ).

I Also, for every parameter sample θ(i), a fresh run of the particle
filter is required.

We will now look at a completely online approach.
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Parameter inference
Nested particle filter

Let us discuss ameta-sampler that can be used to sample from p(θ|y1:t).
First, let us try to use a naive importance sampler to sample from p(θ|y1:t)
(forget for now about latents x1:t).

How to develop an importance sampler for evolving p(θ|y1:t)?
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Parameter inference
Nested particle filter

Let us recall the recursions:

p(θ|y1:t) =
p(yt|θ)p(θ|y1:t−1)

p(yt|y1:t−1)
.

With these recursions in mind, we can indeed naively try to develop an
importance sampler.
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Parameter inference
Nested particle filter

Let us choose a proposal: q(θ) and then perform importance sampling:

I Sample θ(i) ∼ q(θ) for i = 1, . . . ,N .

I Compute the importance weights:

W(i)
t =

p(y1:t|θ(i))p(θ(i))
q(θ(i))

.

I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

Canwe get a sequential structure in weights as in the particle filter case?
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Parameter inference
Nested particle filter

We have

W0:t(θ) =
p(y1:t|θ)p(θ)

q(θ)
.

Unlike the particle filter case, we do not have a sequential structure in
the weights. One can try

W0:t(θ) = p(yt|y1:t−1, θ)W0:t−1(θ).

This means that we have to unroll it back to time zero:

W0:t(θ) = p(yt|y1:t−1, θ)p(yt−1|y1:t−2, θ) · · ·
p(θ)
q(θ)

.
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Parameter inference
Nested particle filter

Given

W0:t(θ) = p(yt|y1:t−1, θ)p(yt−1|y1:t−2, θ) · · ·
p(θ)
q(θ)

.

the practical weight computation would be:

W(i)
0 =

p(θ(i))
q(θ(i))

,

and

W(i)
t = p(yt|y1:t−1, θ

(i))W(i)
t−1.
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Parameter inference
Nested particle filter

This would cause multiple issues:
I The algorithm is essentially putting samples into the space and just

recomputing weights.

I Samples do not move!
I Even if we introduce resampling at every stage, then still have the

same problem.
I Samples do not move + are resampled.
I Only one sample will survive.

I Weneed to introduce a newmechanism tomove the samples around.
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Parameter inference
Nested particle filter

We need a way to shake the particles, without introducing too much
error.
I Use a jittering kernel (Crisan, Míguez, et al., 2014):

κ(dθ|θ′) = (1− εN)δθ′(dθ) + εNτ(dθ|θ′), (5)

to sample new particles θ(i)t ∼ κ(·|θ(i)t−1).
I We usually choose εN ≤ 1√

N
.

I τ can be simple, i.e., multivariate Gaussian or multivariate t distri-
bution.
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Parameter inference
Nested particle filter

The jittered sampler:
I Sample θ̄(i)t ∼ κ(·|θ(i)t−1) for i = 1, . . . ,N .

I Compute the importance weights:

W(i)
t = p(yt|y1:t−1, θ̄

(i)
t ),

I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

I Resample:

θ
(i)
t ∼

N∑
j=1

w(j)
t δ

θ̄
(j)
t
(dθ).
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Parameter inference
Nested particle filter

As you could guess, “compute the importance weights” step should be
done using a particle filter.
I Sample θ̄(i)t ∼ κ(·|θ(i)t−1) for i = 1, . . . ,N .

I Compute the importance weights:

W(i)
t = pM(yt|y1:t−1, θ̄

(i)
t ),

using a particle filter with M particles.
I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

I Resample:

θ
(i)
t ∼

N∑
j=1

w(j)
t δ

θ̄
(j)
t
(dθ).

This algorithm is purely online.
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Parameter inference
Nested particle filter

Both approaches (pMCMC and nested PF) rely on unbiased marginal
likelihoods.

Therefore, the unbiasedness property of PFs are crucial.
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