
MFC CDT Probability and Statistics
Week 10

O. Deniz Akyildiz

Mathematics for our Future Climate: Theory, Data and Simulation (MFC CDT).

December 9, 2024

https://akyildiz.me/

X: @odakyildiz

State-space models
problem definition

y1 y2 . . .

x1x0 x2 . . . xt

yt

The conditional independence structure of a state-space model.

(xt)t∈N+ : hidden signal process, (yt)t∈N+ the observation process.

x0 ∼ π0(dx0), (prior distribution)
xt|xt−1 ∼ τt(dxt|xt−1), (transition model)

yt|xt ∼ gt(yt|xt), (likelihood)

xt ∈ X where X is the state-space. We use: gt(xt) = gt(yt|xt).
2

State-space models
Algorithmic principle

We are interested in estimating expectations,

(ϕ, πt) =

∫
ϕ(xt)πt(xt|y1:t)dxt =

∫
ϕ(xt)πt(dxt),

sequentially as new data arrives.

y1 y2 . . .

x1x0 x2 . . . xt

yt

Algorithm:
Predict

ξt(dxt) =
∫

πt−1(dxt−1)τt(dxt |xt−1)

Update

πt(dxt) = ξt(dxt)
gt(yt |xt)

p(yt |y1:t−1)
.

3

Particle filters
Recap

A general algorithm to estimate expectations of any test function ϕ(xt)
given y1:t .
I Sampling: draw

x̄(i)t ∼ τt(dxt|x(i)t−1)

independently for every i = 1, . . . ,N .
I Weighting: compute

w(i)
t = gt(x̄

(i)
t)/Z̄N

t

for every i = 1, . . . ,N , where Z̄N
t =

∑N
i=1 gt(x̄

(i)
t).

I Resampling: draw independently,

x(i)t ∼ π̃t(dx) :=
∑
i
w(i)
t δx̄(i)t

(dx) for i = 1, ...,N.

πN
t−1 →︸︷︷︸

sampling

ξNt →︸︷︷︸
weighting

π̃N
t →︸︷︷︸

resampling

πN
t .

4

Particle filters
Bootstrap particle filter: Example I

Consider the following state-space model

x0 ∼ N (x0; 0, I),
xt|xt−1 ∼ N (xt;Axt−1,Q),

yt|xt ∼ N (yt;Hxt,R).

where

A =


1 0 κ 0
0 1 0 κ
0 0 0.99 0
0 0 0 0.99

 and Q =


κ3

3 0 κ2

2 0

0 κ3

3 0 κ2

2
κ2

2 0 κ 0

0 κ2

2 0 κ


and

H =

(
1 0 0 0
0 1 0 0

)
and R = r

(
1 0
0 1

)
,

where r = 5.
5

Particle filters
Bootstrap particle filter: Example I

Particle filter for this model: Given x(i)1:t−1 for i = 1, . . . ,N ,
I Sample: x̄(i)t ∼ N (xt;Ax

(i)
t−1,Q),

I Compute weights:

W(i)
t = N (yt;Hx̄(i)t ,R),

Normalise: w(i)
t = W(i)

t /
∑N

i=1 W(i)
t

I Report

πN
t (dxt) =

N∑
i=1

w(i)
t δx̄(i)t

(dxt).

I Resample:

x(i)t ∼
N∑
i=1

w(i)
t δx̄(i)t

(dxt).

6

Particle filters
Bootstrap particle filter: Example II

Let us look the following Lorenz 63 model

x1,t = x1,t−1 − γs(x1,t − x2,t) +
√
γξ1,t,

x2,t = x2,t−1 + γ(rx1,t − x2,t − x1,tx3,t) +
√
γξ2,t,

x3,t = x3,t−1 + γ(x1,tx2,t − bx3,t) +
√
γξ3,t,

where γ = 0.01, r = 28, b = 8/3, s = 10, and ξ1,t, ξ2,t, ξ3,t ∼ N (0, 1)
are independent Gaussian random variables. The observation model is
given by

yt = [1, 0, 0]xt + ηt,

where ηt ∼ N (0, σ2
y) is a Gaussian random variable.

7

Bootstrap particle filter
Marginal likelihoods

Another quantity BPF can estimate is the marginal likelihood:

p(y1:t) =
∫

p(y1:t, x0:t)dx0:t.

This quantity is useful for model selection and model comparison.

8

Bootstrap particle filter
Marginal likelihoods

Recall tbat we have tbe factorisation:

p(y1:t) =
t∏

k=1

p(yk|y1:k−1).

where

p(yt|y1:t−1) =

∫
g(yt|xt)ξt(xt|y1:t−1)dxt.

Recall that we can obtain the approximation of ξt(xt|y1:t−1) by the par-
ticle filter using predictive particles x̄(i)t ∼ τ(xt|x(i)t−1) as

pNt (dxt|y1:t−1) =
1

N

N∑
i=1

δx̄(i)t
(dxt).

9

Bootstrap particle filter
Marginal likelihoods

Therefore, given

pNt (dxt|y1:t−1) =
1

N

N∑
i=1

δx̄(i)t
(dxt),

we get

pN(yt|y1:t−1) =
1

N

N∑
i=1

g(yt|x̄(i)t).

As a result, we can approximate

pN(y1:t) =
t∏

k=1

pN(yk|y1:k−1).

10

Bootstrap particle filter
Marginal likelihoods

Remarkably, this estimate is unbiased:

E[pN(y1:t)] = p(y1:t).

11

Bootstrap particle filter
Convergence bounds

For general (bounded) test functionsϕ(xt) andfilteringmeasuresπN
t (dxt|y1:t),

we have the following Lp bound

‖(ϕ, πN
t)− (ϕ, πt)‖p ≤

ct,p‖ϕ‖∞√
N

.

12

We have seen inference for

y1 y2 . . .

x1x0 x2 . . . xt

yt

What if the model has parameters θ?

y1 y2 · · · yk

x1x0 x2 · · · xk

θ

13

We have seen inference for

y1 y2 . . .

x1x0 x2 . . . xt

yt

What if the model has parameters θ?

y1 y2 · · · yk

x1x0 x2 · · · xk

θ

13

We have seen inference for

y1 y2 . . .

x1x0 x2 . . . xt

yt

What if the model has parameters θ?

y1 y2 · · · yk

x1x0 x2 · · · xk

θ

13

Problem definition
Recap – the model, the notation

y1 y2 · · · yk

x1x0 x2 · · · xk

θ

We are given the model

x0 ∼ µθ(x0),
xt|xt−1 ∼ τθ(xt|xt−1),

yt|xt ∼ gθ(yt|xt).

We aim at estimating θ given y1:T .
14

Problem definition
Marginal likelihood maximization

We are interested in solving the global optimization problem

θ? = argmax
θ∈Θ

log pθ(y1:T),

where

pθ(y1:T) =
∫

pθ(x0:T , y1:T)dx0:T .

In this lecture, we are interested in gradient-based approaches for max-
imization of log pθ(y1:T).

15

State-space models
The smoothing problem

Wehave been looking at the filtering problem, i.e., estimatingπt(xt|y1:t).

What if we want to estimate πt(xt|y1:T) for T > t?

This is called the smoothing problem. These methods are usually imple-
mented backwards in time.

16

State-space models
The smoothing problem

Wehave been looking at the filtering problem, i.e., estimatingπt(xt|y1:t).

What if we want to estimate πt(xt|y1:T) for T > t?

This is called the smoothing problem. These methods are usually imple-
mented backwards in time.

16

State-space models
The smoothing problem

Wehave been looking at the filtering problem, i.e., estimatingπt(xt|y1:t).

What if we want to estimate πt(xt|y1:T) for T > t?

This is called the smoothing problem. These methods are usually imple-
mented backwards in time.

16

State-space models
The smoothing problem

We have smoothing recursions

π(xt+1|y1:t) =
∫

τ(xt+1|xt)π(xt|y1:t)dxt,

π(xt|y1:T) = π(xt|y1:t)
∫

τ(xt+1|xt)π(xt+1|y1:T)
π(xt+1|y1:t)

dxt+1.

17

State-space models
The smoothing problem

Proof: Let us notice

p(xt|xt+1, y1:T) = p(xt|xt+1, y1:t),

=
p(xt, xt+1|y1:t)
p(xt+1|y1:t)

,

=
π(xt|y1:t)τ(xt+1|xt)

π(xt+1|y1:t)
,

where the last equality follows from theMarkov property.

Nowwe con-
struct the joint

p(xt+1, xt|y1:T) = p(xt|xt+1, y1:T)p(xt+1|y1:T),

=
π(xt|y1:t)τ(xt+1|xt)

π(xt+1|y1:t)
π(xt+1|y1:T).

By integrating out xt+1, the result follows.

18

State-space models
The smoothing problem

Proof: Let us notice

p(xt|xt+1, y1:T) = p(xt|xt+1, y1:t),

=
p(xt, xt+1|y1:t)
p(xt+1|y1:t)

,

=
π(xt|y1:t)τ(xt+1|xt)

π(xt+1|y1:t)
,

where the last equality follows from theMarkov property. Nowwe con-
struct the joint

p(xt+1, xt|y1:T) = p(xt|xt+1, y1:T)p(xt+1|y1:T),

=
π(xt|y1:t)τ(xt+1|xt)

π(xt+1|y1:t)
π(xt+1|y1:T).

By integrating out xt+1, the result follows.
18

The smoothing problem

For the maximum-likelihood parameter estimation methods, we often
require an approximation of the smoothing distribution πθ(x0:T |y1:T).

Wait... Can’t we obtain it via the joint sampler we described in the fil-
tering lecture?

Yes, but...

19

The smoothing problem

For the maximum-likelihood parameter estimation methods, we often
require an approximation of the smoothing distribution πθ(x0:T |y1:T).

Wait... Can’t we obtain it via the joint sampler we described in the fil-
tering lecture?

Yes, but...

19

The smoothing problem

For the maximum-likelihood parameter estimation methods, we often
require an approximation of the smoothing distribution πθ(x0:T |y1:T).

Wait... Can’t we obtain it via the joint sampler we described in the fil-
tering lecture?

Yes, but...

19

Particle filters
Sequential Importance Sampling - Resampling (SISR)

I Sample x(i)0 ∼ q(x0) for i = 1, . . . ,N .
I For t ≥ 1

I Sample: x̄(i)t ∼ q(xt |x(i)t−1),
I Compute weights:

W(i)
t =

τ(x̄(i)t |x(i)t−1)g(yt |x̄
(i)
t)

q(x̄(i)t |x(i)t−1)
.

Normalise: w(i)
t = W(i)

t /
∑N

i=1 W(i)
t

I Report

π̃N
t (dx0:t) =

N∑
i=1

w(i)
t δx̄(i)0:t

(dx0:t).

I Resample:

x(i)t ∼
N∑
i=1

w(i)
t δx̄(i)t

(dxt).

20

The smoothing problem
Another look

Recall how we do it: For t ≥ 2,
I Sample:

x̄(i)t ∼ qt(xt|x(i)t−1),

I Weight

w(i)
t ∝

τθ(x̄
(i)
t |x(i)t−1)gθ(yt|x̄

(i)
t)

qt(x̄
(i)
t |x(i)t−1)

,

I Resample: Choose a(i)t where P(a(i)t = j) ∝ wj
t and set

x(i)1:t = (xa
(i)
t

1:t−1, x̄
a(i)t
t)

The entire state history is resampled! What can go wrong?
21

The smoothing problem
Path degeneracy

If we do resampling every step (which is crucial), then we can only do
it if we track the genealogy backwards. (?)
I After every resample, we throw away the killed particles’ ancestors

and replace them with the survivors’ ancestors.
Path degeneracy is a big issue.

Figure: Source: Svensson, Andreas,Thomas B. Schön, andManonKok. ”Non-
linear state space smoothing using the conditional particle filter.” (2015).

22

The smoothing problem
An alternative: Forward filtering backward (something)

Instead, we can consider the following decomposition

πθ(x0:T |y1:T) = πθ(xT |y0:T)
T−1∏
k=0

πθ(xk|y0:T , xk+1),

= πθ(xT |y0:T)
T−1∏
k=0

πθ(xk|y0:k, xk+1). (1)

where

πθ(xt|xt+1, y1:t) =
πθ(xt, xt+1|y1:t)
ξθ(xt+1|y1:t)

, (2)

=
τθ(xt+1|xt)πθ(xt|y1:t)

ξθ(xt+1|y1:t)
. (3)

23

The smoothing problem
An alternative: Forward filtering backward sampling

πθ(x0:T |y1:T) = πθ(xT |y0:T)
T−1∏
k=0

πθ(xk|y0:k, xk+1).

This recursion suggests sampling πθ(xT |y1:T) from the filter and sample
backwards from πθ(xk|y0:k, xk+1) by conditioning on the xk+1. This
would provide us a sample x(i)0:T from the smoother.

We approximate the backward distribution as

πθ(dxt|xt+1, y1:t) =
τθ(xt+1|xt)πN

θ (dxt|y1:t)
ξNθ (xt+1|y1:t)

.

where πN
θ and ξNθ approximate filtering and predictive measures (see

next slide).
24

The smoothing problem
An alternative: Forward filtering backward sampling

πθ(dxt|xt+1, y1:t) =
τθ(xt+1|xt)πN

θ (dxt|y1:t)∫
τθ(xt+1|xt)πN

θ (dxt|y1:t)

Plugging πN
θ (dxt|y1:t) =

∑N
i=1 w(i)

t δx̄(i)t
(dxt) gives

πN
θ (dxt|xt+1, y1:t) =

∑N
i=1 w(i)

t τθ(xt+1|x̄(i)t)δx̄(i)t
(dxt)∑N

i=1 w(i)
t τθ(xt+1|x̄(i)t)

(4)

25

The smoothing problem
An alternative: Forward filtering backward sampling

If we use the weighted approximation then the FFBSa is given by
I At time T , sample x̃T ∼ πN

θ (dxT |y1:T),
I t from T − 1 to 1:

I Compute smoothing weights

w(i)
t+1|t ∝ w(i)

t τθ(x̃t+1|x̄(i)t).

I Then sample

x̃t ∼
N∑
i=1

w(i)
t+1|tδx̄(i)t

(dxt).

The sample x̃0:T is a sample from the smoother. However, it is just a
single sample!

Do the same N times. Reduces path degeneracy, but O(N2(T + 1)).
26

The smoothing problem
Another alternative: Forward filtering backward smoothing

Recall the original smoothing recursions we discussed:

πθ(xt|y1:T) =
∫

πθ(xt, xt+1|y1:T)dxt+1,

=

∫
πθ(xt|xt+1, y1:t)πθ(xt+1|y1:T)dxt+1,

=

∫
τθ(xt+1|xt)πθ(xt|y1:t)

ξθ(xt+1|y1:t)
πθ(xt+1|y1:T)dxt+1.

Can we use these to build a particle approximation? Recall measure
theoretic form

πθ(dxt|y1:T) = πθ(dxt|y1:t)
∫

τθ(xt+1|xt)
ξθ(xt+1|y1:t)

πθ(xt+1|y1:T)dxt+1.

27

The smoothing problem
Another alternative: Forward filtering backward smoothing

Recall the original smoothing recursions we discussed:

πθ(xt|y1:T) =
∫

πθ(xt, xt+1|y1:T)dxt+1,

=

∫
πθ(xt|xt+1, y1:t)πθ(xt+1|y1:T)dxt+1,

=

∫
τθ(xt+1|xt)πθ(xt|y1:t)

ξθ(xt+1|y1:t)
πθ(xt+1|y1:T)dxt+1.

Can we use these to build a particle approximation?

Recall measure
theoretic form

πθ(dxt|y1:T) = πθ(dxt|y1:t)
∫

τθ(xt+1|xt)
ξθ(xt+1|y1:t)

πθ(xt+1|y1:T)dxt+1.

27

The smoothing problem
Another alternative: Forward filtering backward smoothing

Recall the original smoothing recursions we discussed:

πθ(xt|y1:T) =
∫

πθ(xt, xt+1|y1:T)dxt+1,

=

∫
πθ(xt|xt+1, y1:t)πθ(xt+1|y1:T)dxt+1,

=

∫
τθ(xt+1|xt)πθ(xt|y1:t)

ξθ(xt+1|y1:t)
πθ(xt+1|y1:T)dxt+1.

Can we use these to build a particle approximation? Recall measure
theoretic form

πθ(dxt|y1:T) = πθ(dxt|y1:t)
∫

τθ(xt+1|xt)
ξθ(xt+1|y1:t)

πθ(xt+1|y1:T)dxt+1.

27

The smoothing problem
Another alternative: Forward filtering backward smoothing

Backward recursion

πθ(dxt|y1:T) = πθ(dxt|y1:t)
∫

τθ(xt+1|xt)∫
τθ(xt+1|xt)πθ(dxt|y1:t)

πθ(dxt+1|y1:T).

This means that we can use approximations {πN
θ (dxt|y1:t)}Tt=1 again to

recursively update the smoother backwards in time and construct the
smoother update

πθ(dxt+1|y1:T) 7→ πθ(dxt|y1:T).

28

The smoothing problem
Another alternative: Forward filtering backward smoothing

Backward recursion

πθ(dxt|y1:T) = πθ(dxt|y1:t)
∫

τθ(xt+1|xt)∫
τθ(xt+1|xt)πθ(dxt|y1:t)

πθ(dxt+1|y1:T).

This means that we can use approximations {πN
θ (dxt|y1:t)}Tt=1 again to

recursively update the smoother backwards in time and construct the
smoother update

πθ(dxt+1|y1:T) 7→ πθ(dxt|y1:T).

28

The smoothing problem
Another alternative: Forward filtering backward smoothing

Assume we have an approximation

πN
θ (dxt+1|y1:T) =

N∑
i=1

w(i)
t+1|Tδx̄(i)t+1

(dxt+1).

where w(i)
T|T = w(i)

T . We can use the recursion in the previous slide to
obtain

πθ(dxt|y1:T) =
N∑
i=1

w(i)
t|Tδx̄(i)t

(dxt),

where

w(i)
t|T = w(i)

t

N∑
j=1

w(j)
t+1|Tτθ(x̄

(j)
t+1|x̄

(i)
t)∑N

l=1 w(l)
t τθ(x̄

(j)
t+1|x̄

(l)
t)

29

The parameter estimation problem
Marginal likelihood maximization

Recall we are interested in solving the global optimization problem

θ? = argmax
θ∈Θ

log pθ(y1:T),

where

pθ(y1:T) =
∫

pθ(x0:T , y1:T)dx0:T .

30

The parameter estimation problem
Marginal likelihood maximization

A generic way to do this would be to run

θi+1 = θi + γ∇ log pθ(y1:T).

I Well understood gradient scheme,
I Can be also replaced by an adaptive gradient scheme. (Adam, your

favourite one...)
However, the gradient is not computable...

31

The parameter estimation problem
How to compute the gradient?

For this maximization, we will be interested in computing

∇θ log pθ(y1:T).

For this, we use Fisher’s identity.

32

The parameter estimation problem
How to compute the gradient?

Proposition 1 (Fisher’s identity)

Under appropriate regularity conditions, we have

∇θ log pθ(y1:T) =
∫

∇θ log pθ(x0:T , y1:T)pθ(x0:T |y1:T)dx0:T .

33

The parameter estimation problem
How to compute the gradient?

Proof.
Let us note that

∇θ log pθ(y1:T) =
∇θpθ(y1:T)
pθ(y1:T)

,

=
∇
∫
pθ(x0:T , y1:T)dx0:T

pθ(y1:T)
,

=

∫
∇pθ(x0:T , y1:T)

pθ(y1:T)
dx0:T ,

=

∫
∇ log pθ(x0:T , y1:T)pθ(x0:T , y1:T)

pθ(y1:T)
dx0:T ,

=

∫
∇ log pθ(x0:T , y1:T)πθ(x0:T |y1:T)dx0:T .

�

34

The parameter estimation problem
How to compute the gradient?

Given Fisher’s identity,

∇θ log pθ(y1:T) =
∫

∇θ log pθ(x0:T , y1:T)πθ(x0:T |y1:T)dx0:T .

and

log pθ(x0:T , y1:T) = logµθ(x0) +
T∑

t=1

log τθ(xt|xt−1) +

T∑
t=1

log gθ(yt|xt),

35

The parameter estimation problem
How to compute the gradient?

Given

log pθ(x0:T , y1:T) = logµθ(x0) +
T∑

t=1

log τθ(xt|xt−1) +

T∑
t=1

log gθ(yt|xt),

Some shortcut notation:

sθ1(x−1, x0) = sθ0(x0) = ∇ logµθ(x0),
sθ,t(xt−1, xt) = ∇ log gθ(yt|xt) +∇ log τθ(xt|xt−1).

36

The parameter estimation problem
How to compute the gradient?

So finally the gradient can be written as an expectation

∇θ log pθ(y1:T) =
∫

∇θ log pθ(x0:T , y1:T)pθ(x0:T |y1:T)dx0:T .

We identify the marginal likelihood as an additive functional

∇θ log pθ(y1:T) = SθT(x1:T),

=

∫
XT+1

(T∑
t=1

sθt (xt−1, xt)

)
πθ(x0:T |y1:T)dx0:T .

37

The parameter estimation problem
How to compute the gradient?

But how do we compute? Recall

sθt (xt−1, xt) = ∇ log gθ(yt|xt) +∇ log τθ(xt|xt−1).

TheBPFwith parameter gradient computation. Fix θ and assume {X(i)
1:t−1, α

(i)
t−1}

are given.
I Sample: x̄(i)t ∼ τθ(xt|x

(i)
t−1).

I Weight w(i)
t ∝ g(yt|x̄(i)t).

I Resample:

x(i)t ∼
N∑
i=1

w(i)
t δx̄(i)t

(dxt),

i.e. x(i)t = x̄a
(i)
t

t with P(a(i)t = j) = wj
t and construct the estimate

α
(i)
t = α

a(i)t
t−1 + sθt (x

a(i)t
t−1, x

(i)
t)

38

The parameter estimation problem
How to compute the gradient?

Then

Sθ,NT =
1

N

N∑
i=1

α
(i)
T

However, as this naive “forward smoother”O(N) iteration complexity)
suffers from path degeneracy as we discussed before, therefore the esti-
mates will not be reliable.

Use FFBS described before however the computation won’t be recursive
(it is offline) and O(N2) complexity - but has better properties.

39

y1 y2 · · · yk

x1x0 x2 · · · xk

θ

We are given the model

x0 ∼ µθ(x0),
xt|xt−1 ∼ τθ(xt|xt−1),

yt|xt ∼ gθ(yt|xt).

We looked at estimating θ given y1:T .

40

I We have seen maximum likelihood approaches

θ? ∈ argmax
θ∈Θ

log p(y1:T |θ).

where

p(y1:T |θ) =
∫

p(y1:T , x0:T |θ)dx0:T .

We will now look at the Bayesian approach to this problem.

41

Problem definition
Recap – the model, the notation

y1 y2 · · · yk

x1x0 x2 · · · xk

θ

We are given the model

θ ∼ p(θ),
x0 ∼ µθ(x0),

xt|xt−1 ∼ τ(xt|xt−1, θ),

yt|xt ∼ g(yt|xt, θ).

We aim at sampling from p(θ|y1:T).
42

State-space models
Recall: Algorithmic principle

We are interested in estimating expectations,

(ϕ, πt) =

∫
ϕ(xt)πt(xt|y1:t)dxt =

∫
ϕ(xt)πt(dxt),

sequentially as new data arrives.

y1 y2 . . .

x1x0 x2 . . . xt

yt

Algorithm:
Predict

ξt(dxt) =
∫

πt−1(dxt−1)τt(dxt |xt−1)

Update

πt(dxt) = ξt(dxt)
gt(yt |xt)

p(yt |y1:t−1)
.

43

Particle filters
Reminder

A general algorithm to estimate expectations of any test function ϕ(xt)
given y1:t .
I Sampling: draw

x̄(i)t ∼ τθ(dxt|x
(i)
t−1)

independently for every i = 1, . . . ,N .
I Weighting: compute

w(i)
t = gθ(x̄

(i)
t)/Z̄N

t

for every i = 1, . . . ,N , where Z̄N
t =

∑N
i=1 gθ(x̄

(i)
t).

I Resampling: draw independently,

x(i)t ∼ π̃t(dx) :=
∑
i
w(i)
t δx̄(i)t

(dx) for i = 1, ...,N.

πN
t−1 →︸︷︷︸

sampling

ξNt →︸︷︷︸
weighting

π̃N
t →︸︷︷︸

resampling

πN
t .

44

Bootstrap particle filter
Marginal likelihoods

Another quantity BPF can estimate is the marginal likelihood:

p(y1:t|θ) =
∫

p(y1:t, x0:t|θ)dx0:t.

This quantity is useful for model selection and model comparison.

45

Bootstrap particle filter
Marginal likelihoods

Recall that we have tbe factorisation:

p(y1:t|θ) =
t∏

k=1

p(yk|y1:k−1, θ).

where

p(yt|y1:t−1, θ) =

∫
g(yt|xt, θ)ξ(xt|y1:t−1, θ)dxt.

Recall that we can obtain the approximation of ξ(xt|y1:t−1, θ) by the
particle filter using predictive particles x̄(i)t ∼ τ(xt|x(i)t−1, θ) as

pN(dxt|y1:t−1, θ) =
1

N

N∑
i=1

δx̄(i)t
(dxt).

46

Bootstrap particle filter
Marginal likelihoods

Therefore, given

pNθ (dxt|y1:t−1, θ) =
1

N

N∑
i=1

δx̄(i)t
(dxt),

we get

pN(yt|y1:t−1, θ) =
1

N

N∑
i=1

g(yt|x̄(i)t , θ).

As a result, we can approximate

pN(y1:t|θ) =
t∏

k=1

pN(yk|y1:k−1, θ).

47

Bootstrap particle filter
Marginal likelihoods

Remarkably, this estimate is unbiased:

E[pN(y1:t|θ)] = p(y1:t|θ),

for every fixed θ.

48

Parameter inference
A basic approach based on Metropolis-Hastings

Let us assume that we would like to sample from p(θ|y1:t)

I We would normally use the factorisation

p(θ|y1:t) ∝ p(y1:t|θ)p(θ).

I Based on this, we could design a Metropolis-Hastings algorithm
(with any proposal).

49

Parameter inference
A basic approach based on Metropolis-Hastings

Let us assume that we would like to sample from p(θ|y1:t)
I We would normally use the factorisation

p(θ|y1:t) ∝ p(y1:t|θ)p(θ).

I Based on this, we could design a Metropolis-Hastings algorithm
(with any proposal).

49

Parameter inference
A basic approach based on Metropolis-Hastings

Let us assume that we would like to sample from p(θ|y1:t)
I We would normally use the factorisation

p(θ|y1:t) ∝ p(y1:t|θ)p(θ).

I Based on this, we could design a Metropolis-Hastings algorithm
(with any proposal).

49

Parameter inference
A basic approach based on Metropolis-Hastings

Let us assume that we would like to sample from p(θ|y1:t)
I We would normally use the factorisation

p(θ|y1:t) ∝ p(y1:t|θ)p(θ).

I Based on this, we could design a Metropolis-Hastings algorithm
(with any proposal).

49

Parameter inference
A basic approach based on Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
I Given θ(i), sample θ′ ∼ q(θ′|θ(i)).

I Compute the acceptance ratio

r(θ(i), θ′) =
p(y1:t|θ′)p(θ′)q(θ(i)|θ′)

p(y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

I Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) = θ′.
I Otherwise, set θ(i+1) = θ(i).

Can this be applicable for state-space models?

50

Parameter inference
A basic approach based on Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
I Given θ(i), sample θ′ ∼ q(θ′|θ(i)).
I Compute the acceptance ratio

r(θ(i), θ′) =
p(y1:t|θ′)p(θ′)q(θ(i)|θ′)

p(y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

I Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) = θ′.
I Otherwise, set θ(i+1) = θ(i).

Can this be applicable for state-space models?

50

Parameter inference
A basic approach based on Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
I Given θ(i), sample θ′ ∼ q(θ′|θ(i)).
I Compute the acceptance ratio

r(θ(i), θ′) =
p(y1:t|θ′)p(θ′)q(θ(i)|θ′)

p(y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

I Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) = θ′.

I Otherwise, set θ(i+1) = θ(i).
Can this be applicable for state-space models?

50

Parameter inference
A basic approach based on Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
I Given θ(i), sample θ′ ∼ q(θ′|θ(i)).
I Compute the acceptance ratio

r(θ(i), θ′) =
p(y1:t|θ′)p(θ′)q(θ(i)|θ′)

p(y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

I Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) = θ′.
I Otherwise, set θ(i+1) = θ(i).

Can this be applicable for state-space models?

50

Parameter inference
A basic approach based on Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
I Given θ(i), sample θ′ ∼ q(θ′|θ(i)).
I Compute the acceptance ratio

r(θ(i), θ′) =
p(y1:t|θ′)p(θ′)q(θ(i)|θ′)

p(y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

I Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) = θ′.
I Otherwise, set θ(i+1) = θ(i).

Can this be applicable for state-space models?

50

Parameter inference
A basic approach based on Metropolis-Hastings

The issue:
I We do not know p(y1:t|θ) as this is an integral over x0:t :

p(y1:t|θ) =
∫

p(y1:t, x0:t|θ)dx0:t.

I We can approximate this integral using the particle filter:

pN(y1:t|θ) =
1

N

N∑
i=1

g(yt|x̄(i)t , θ).

I Remarkably, plugging in unbiased estimates inMetropolis-Hastings
ratios preserves the stationary measure (Andrieu et al., 2010).

51

Parameter inference
A basic approach based on Metropolis-Hastings

The issue:
I We do not know p(y1:t|θ) as this is an integral over x0:t :

p(y1:t|θ) =
∫

p(y1:t, x0:t|θ)dx0:t.

I We can approximate this integral using the particle filter:

pN(y1:t|θ) =
1

N

N∑
i=1

g(yt|x̄(i)t , θ).

I Remarkably, plugging in unbiased estimates inMetropolis-Hastings
ratios preserves the stationary measure (Andrieu et al., 2010).

51

Parameter inference
A basic approach based on Metropolis-Hastings

The issue:
I We do not know p(y1:t|θ) as this is an integral over x0:t :

p(y1:t|θ) =
∫

p(y1:t, x0:t|θ)dx0:t.

I We can approximate this integral using the particle filter:

pN(y1:t|θ) =
1

N

N∑
i=1

g(yt|x̄(i)t , θ).

I Remarkably, plugging in unbiased estimates inMetropolis-Hastings
ratios preserves the stationary measure (Andrieu et al., 2010).

51

Parameter inference
particle Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
I Given θ(i), sample θ′ ∼ q(θ′|θ(i)).

I Compute the acceptance ratio

r(θ(i), θ′) =
pN(y1:t|θ′)p(θ′)q(θ(i)|θ′)

pN(y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

I Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) = θ′.
I Otherwise, set θ(i+1) = θ(i).

This is called the particle Metropolis-Hastings algorithm.

52

Parameter inference
particle Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
I Given θ(i), sample θ′ ∼ q(θ′|θ(i)).
I Compute the acceptance ratio

r(θ(i), θ′) =
pN(y1:t|θ′)p(θ′)q(θ(i)|θ′)

pN(y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

I Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) = θ′.
I Otherwise, set θ(i+1) = θ(i).

This is called the particle Metropolis-Hastings algorithm.

52

Parameter inference
particle Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
I Given θ(i), sample θ′ ∼ q(θ′|θ(i)).
I Compute the acceptance ratio

r(θ(i), θ′) =
pN(y1:t|θ′)p(θ′)q(θ(i)|θ′)

pN(y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

I Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) = θ′.

I Otherwise, set θ(i+1) = θ(i).

This is called the particle Metropolis-Hastings algorithm.

52

Parameter inference
particle Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
I Given θ(i), sample θ′ ∼ q(θ′|θ(i)).
I Compute the acceptance ratio

r(θ(i), θ′) =
pN(y1:t|θ′)p(θ′)q(θ(i)|θ′)

pN(y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

I Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) = θ′.
I Otherwise, set θ(i+1) = θ(i).

This is called the particle Metropolis-Hastings algorithm.

52

Parameter inference
particle Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
I Given θ(i), sample θ′ ∼ q(θ′|θ(i)).
I Compute the acceptance ratio

r(θ(i), θ′) =
pN(y1:t|θ′)p(θ′)q(θ(i)|θ′)

pN(y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

I Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) = θ′.
I Otherwise, set θ(i+1) = θ(i).

This is called the particle Metropolis-Hastings algorithm.

52

Parameter inference
particle Metropolis-Hastings

A few drawbacks of this approach:
I The algorithm is not very efficient as it requires a large number of

particles to obtain a good approximation of p(y1:t|θ).

I Also, for every parameter sample θ(i), a fresh run of the particle
filter is required.

We will now look at a completely online approach.

53

Parameter inference
particle Metropolis-Hastings

A few drawbacks of this approach:
I The algorithm is not very efficient as it requires a large number of

particles to obtain a good approximation of p(y1:t|θ).
I Also, for every parameter sample θ(i), a fresh run of the particle

filter is required.

We will now look at a completely online approach.

53

Parameter inference
particle Metropolis-Hastings

A few drawbacks of this approach:
I The algorithm is not very efficient as it requires a large number of

particles to obtain a good approximation of p(y1:t|θ).
I Also, for every parameter sample θ(i), a fresh run of the particle

filter is required.

We will now look at a completely online approach.

53

Parameter inference
Nested particle filter

Let us discuss ameta-sampler that can be used to sample from p(θ|y1:t).
First, let us try to use a naive importance sampler to sample from p(θ|y1:t)
(forget for now about latents x1:t).

How to develop an importance sampler for evolving p(θ|y1:t)?

54

Parameter inference
Nested particle filter

Let us recall the recursions:

p(θ|y1:t) =
p(yt|θ)p(θ|y1:t−1)

p(yt|y1:t−1)
.

With these recursions in mind, we can indeed naively try to develop an
importance sampler.

55

Parameter inference
Nested particle filter

Let us recall the recursions:

p(θ|y1:t) =
p(yt|θ)p(θ|y1:t−1)

p(yt|y1:t−1)
.

With these recursions in mind, we can indeed naively try to develop an
importance sampler.

55

Parameter inference
Nested particle filter

Let us choose a proposal: q(θ) and then perform importance sampling:

I Sample θ(i) ∼ q(θ) for i = 1, . . . ,N .

I Compute the importance weights:

W(i)
t =

p(y1:t|θ(i))p(θ(i))
q(θ(i))

.

I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

Canwe get a sequential structure in weights as in the particle filter case?

56

Parameter inference
Nested particle filter

Let us choose a proposal: q(θ) and then perform importance sampling:

I Sample θ(i) ∼ q(θ) for i = 1, . . . ,N .
I Compute the importance weights:

W(i)
t =

p(y1:t|θ(i))p(θ(i))
q(θ(i))

.

I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

Canwe get a sequential structure in weights as in the particle filter case?

56

Parameter inference
Nested particle filter

Let us choose a proposal: q(θ) and then perform importance sampling:

I Sample θ(i) ∼ q(θ) for i = 1, . . . ,N .
I Compute the importance weights:

W(i)
t =

p(y1:t|θ(i))p(θ(i))
q(θ(i))

.

I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

Canwe get a sequential structure in weights as in the particle filter case?

56

Parameter inference
Nested particle filter

Let us choose a proposal: q(θ) and then perform importance sampling:

I Sample θ(i) ∼ q(θ) for i = 1, . . . ,N .
I Compute the importance weights:

W(i)
t =

p(y1:t|θ(i))p(θ(i))
q(θ(i))

.

I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

Canwe get a sequential structure in weights as in the particle filter case?

56

Parameter inference
Nested particle filter

We have

W0:t(θ) =
p(y1:t|θ)p(θ)

q(θ)
.

Unlike the particle filter case, we do not have a sequential structure in
the weights. One can try

W0:t(θ) = p(yt|y1:t−1, θ)W0:t−1(θ).

This means that we have to unroll it back to time zero:

W0:t(θ) = p(yt|y1:t−1, θ)p(yt−1|y1:t−2, θ) · · ·
p(θ)
q(θ)

.

57

Parameter inference
Nested particle filter

We have

W0:t(θ) =
p(y1:t|θ)p(θ)

q(θ)
.

Unlike the particle filter case, we do not have a sequential structure in
the weights. One can try

W0:t(θ) = p(yt|y1:t−1, θ)W0:t−1(θ).

This means that we have to unroll it back to time zero:

W0:t(θ) = p(yt|y1:t−1, θ)p(yt−1|y1:t−2, θ) · · ·
p(θ)
q(θ)

.

57

Parameter inference
Nested particle filter

Given

W0:t(θ) = p(yt|y1:t−1, θ)p(yt−1|y1:t−2, θ) · · ·
p(θ)
q(θ)

.

the practical weight computation would be:

W(i)
0 =

p(θ(i))
q(θ(i))

,

and

W(i)
t = p(yt|y1:t−1, θ

(i))W(i)
t−1.

58

Parameter inference
Nested particle filter

This would cause multiple issues:
I The algorithm is essentially putting samples into the space and just

recomputing weights.

I Samples do not move!
I Even if we introduce resampling at every stage, then still have the

same problem.
I Samples do not move + are resampled.
I Only one sample will survive.

I Weneed to introduce a newmechanism tomove the samples around.

59

Parameter inference
Nested particle filter

This would cause multiple issues:
I The algorithm is essentially putting samples into the space and just

recomputing weights.
I Samples do not move!

I Even if we introduce resampling at every stage, then still have the
same problem.
I Samples do not move + are resampled.
I Only one sample will survive.

I Weneed to introduce a newmechanism tomove the samples around.

59

Parameter inference
Nested particle filter

This would cause multiple issues:
I The algorithm is essentially putting samples into the space and just

recomputing weights.
I Samples do not move!

I Even if we introduce resampling at every stage, then still have the
same problem.

I Samples do not move + are resampled.
I Only one sample will survive.

I Weneed to introduce a newmechanism tomove the samples around.

59

Parameter inference
Nested particle filter

This would cause multiple issues:
I The algorithm is essentially putting samples into the space and just

recomputing weights.
I Samples do not move!

I Even if we introduce resampling at every stage, then still have the
same problem.
I Samples do not move + are resampled.

I Only one sample will survive.
I Weneed to introduce a newmechanism tomove the samples around.

59

Parameter inference
Nested particle filter

This would cause multiple issues:
I The algorithm is essentially putting samples into the space and just

recomputing weights.
I Samples do not move!

I Even if we introduce resampling at every stage, then still have the
same problem.
I Samples do not move + are resampled.
I Only one sample will survive.

I Weneed to introduce a newmechanism tomove the samples around.

59

Parameter inference
Nested particle filter

This would cause multiple issues:
I The algorithm is essentially putting samples into the space and just

recomputing weights.
I Samples do not move!

I Even if we introduce resampling at every stage, then still have the
same problem.
I Samples do not move + are resampled.
I Only one sample will survive.

I Weneed to introduce a newmechanism tomove the samples around.

59

Parameter inference
Nested particle filter

We need a way to shake the particles, without introducing too much
error.
I Use a jittering kernel (Crisan, Míguez, et al., 2014):

κ(dθ|θ′) = (1− εN)δθ′(dθ) + εNτ(dθ|θ′), (5)

to sample new particles θ(i)t ∼ κ(·|θ(i)t−1).
I We usually choose εN ≤ 1√

N
.

I τ can be simple, i.e., multivariate Gaussian or multivariate t distri-
bution.

60

Parameter inference
Nested particle filter

The jittered sampler:
I Sample θ̄(i)t ∼ κ(·|θ(i)t−1) for i = 1, . . . ,N .

I Compute the importance weights:

W(i)
t = p(yt|y1:t−1, θ̄

(i)
t),

I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

I Resample:

θ
(i)
t ∼

N∑
j=1

w(j)
t δ

θ̄
(j)
t
(dθ).

61

Parameter inference
Nested particle filter

The jittered sampler:
I Sample θ̄(i)t ∼ κ(·|θ(i)t−1) for i = 1, . . . ,N .
I Compute the importance weights:

W(i)
t = p(yt|y1:t−1, θ̄

(i)
t),

I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

I Resample:

θ
(i)
t ∼

N∑
j=1

w(j)
t δ

θ̄
(j)
t
(dθ).

61

Parameter inference
Nested particle filter

The jittered sampler:
I Sample θ̄(i)t ∼ κ(·|θ(i)t−1) for i = 1, . . . ,N .
I Compute the importance weights:

W(i)
t = p(yt|y1:t−1, θ̄

(i)
t),

I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

I Resample:

θ
(i)
t ∼

N∑
j=1

w(j)
t δ

θ̄
(j)
t
(dθ).

61

Parameter inference
Nested particle filter

As you could guess, “compute the importance weights” step should be
done using a particle filter.
I Sample θ̄(i)t ∼ κ(·|θ(i)t−1) for i = 1, . . . ,N .

I Compute the importance weights:

W(i)
t = pM(yt|y1:t−1, θ̄

(i)
t),

using a particle filter with M particles.
I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

I Resample:

θ
(i)
t ∼

N∑
j=1

w(j)
t δ

θ̄
(j)
t
(dθ).

This algorithm is purely online.

62

Parameter inference
Nested particle filter

As you could guess, “compute the importance weights” step should be
done using a particle filter.
I Sample θ̄(i)t ∼ κ(·|θ(i)t−1) for i = 1, . . . ,N .
I Compute the importance weights:

W(i)
t = pM(yt|y1:t−1, θ̄

(i)
t),

using a particle filter with M particles.

I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

I Resample:

θ
(i)
t ∼

N∑
j=1

w(j)
t δ

θ̄
(j)
t
(dθ).

This algorithm is purely online.

62

Parameter inference
Nested particle filter

As you could guess, “compute the importance weights” step should be
done using a particle filter.
I Sample θ̄(i)t ∼ κ(·|θ(i)t−1) for i = 1, . . . ,N .
I Compute the importance weights:

W(i)
t = pM(yt|y1:t−1, θ̄

(i)
t),

using a particle filter with M particles.
I Normalise the weights:

w(i)
t =

W(i)
t∑N

j=1 W(j)
t

.

I Resample:

θ
(i)
t ∼

N∑
j=1

w(j)
t δ

θ̄
(j)
t
(dθ).

This algorithm is purely online. 62

Parameter inference
Nested particle filter

Both approaches (pMCMC and nested PF) rely on unbiased marginal
likelihoods.

Therefore, the unbiasedness property of PFs are crucial.

63

Parameter inference
Nested particle filter

Both approaches (pMCMC and nested PF) rely on unbiased marginal
likelihoods.

Therefore, the unbiasedness property of PFs are crucial.

63

References I

Andrieu,Christophe,ArnaudDoucet, andRomanHolenstein (2010).
“Particle Markov chain Monte Carlo methods”. In: Journal of the
Royal Statistical Society: Series B (StatisticalMethodology) 72.3, pp. 269–
342.
Crisan, Dan, Joaquín Míguez, et al. (2014). “Particle-kernel estima-
tion of the filter density in state-space models”. In: Bernoulli 20.4,
pp. 1879–1929.

64

	Background
	A brief summary of particle smoothing
	Parameter estimation problem in SSMs
	References

