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y1 y2 · · · yk

x1x0 x2 · · · xk

θ

We are given the model

x0 ∼ µθ(x0),

xt|xt−1 ∼ τθ(xt|xt−1),

yt|xt ∼ gθ(yt|xt).

We looked at estimating θ given y1:T .
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▶ We have seen maximum likelihood approaches in the last session
that would solve

θ⋆ ∈ argmax
θ∈Θ

log p(y1:T |θ).

where

p(y1:T |θ) =
∫

p(y1:T , x0:T |θ)dx0:T .

Today, we will first look at the Bayesian approach to this problem.
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Problem definition
Recap – the model, the notation

y1 y2 · · · yk

x1x0 x2 · · · xk

θ

We are given the model

θ ∼ p(θ),

x0 ∼ µθ(x0),

xt|xt−1 ∼ τ(xt|xt−1, θ),

yt|xt ∼ g(yt|xt, θ).

We aim at sampling from p(θ|y1:T ).
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State-space models
Recall: Algorithmic principle

We are interested in estimating expectations,

(φ, πt) =

∫
φ(xt)πt(xt|y1:t)dxt =

∫
φ(xt)πt(dxt),

sequentially as new data arrives.

y1 y2 . . .

x1x0 x2 . . . xt

yt

Algorithm:
Predict

ξt(dxt) =

∫
πt−1(dxt−1)τt(dxt|xt−1)

Update

πt(dxt) = ξt(dxt)
gt(yt|xt)

p(yt|y1:t−1)
.

5



Particle filters
Reminder

A general algorithm to estimate expectations of any test function
φ(xt) given y1:t.
▶ Sampling: draw

x̄
(i)
t ∼ τθ(dxt|x

(i)
t−1)

independently for every i = 1, . . . , N .
▶ Weighting: compute

w
(i)
t = gθ(x̄

(i)
t )/Z̄N

t

for every i = 1, . . . , N , where Z̄N
t =

∑N
i=1 gθ(x̄

(i)
t ).

▶ Resampling: draw independently,

x
(i)
t ∼ π̃t(dx) :=

∑
i

w
(i)
t δ

x̄
(i)
t
(dx) for i = 1, ..., N.

πN
t−1 →︸︷︷︸

sampling

ξNt →︸︷︷︸
weighting

π̃N
t →︸︷︷︸

resampling

πN
t .
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Bootstrap particle filter
Marginal likelihoods

Another quantity BPF can estimate is the marginal likelihood:

p(y1:t|θ) =
∫

p(y1:t, x0:t|θ)dx0:t.

This quantity is useful for model selection and model comparison.
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Bootstrap particle filter
Marginal likelihoods

Recall that we have tbe factorisation:

p(y1:t|θ) =
t∏

k=1

p(yk|y1:k−1, θ).

where

p(yt|y1:t−1, θ) =

∫
g(yt|xt, θ)ξ(xt|y1:t−1, θ)dxt.

Recall that we can obtain the approximation of ξ(xt|y1:t−1, θ) by the
particle filter using predictive particles x̄

(i)
t ∼ τ(xt|x(i)t−1, θ) as

pN (dxt|y1:t−1, θ) =
1

N

N∑
i=1

δ
x̄
(i)
t
(dxt).

8



Bootstrap particle filter
Marginal likelihoods

Therefore, given

pNθ (dxt|y1:t−1, θ) =
1

N

N∑
i=1

δ
x̄
(i)
t
(dxt),

we get

pN (yt|y1:t−1, θ) =
1

N

N∑
i=1

g(yt|x̄(i)t , θ).

As a result, we can approximate

pN (y1:t|θ) =
t∏

k=1

pN (yk|y1:k−1, θ).
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Bootstrap particle filter
Marginal likelihoods

Remarkably, this estimate is unbiased:

E[pN (y1:t|θ)] = p(y1:t|θ),

for every fixed θ.
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Parameter inference
A basic approach based on Metropolis-Hastings

Let us assume that we would like to sample from p(θ|y1:t)

▶ We would normally use the factorisation

p(θ|y1:t) ∝ p(y1:t|θ)p(θ).

▶ Based on this, we could design a Metropolis-Hastings algorithm
(with any proposal).
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Parameter inference
A basic approach based on Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
▶ Given θ(i), sample θ′ ∼ q(θ′|θ(i)).

▶ Compute the acceptance ratio

r(θ(i), θ′) =
p(y1:t|θ′)p(θ′)q(θ(i)|θ′)

p(y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

▶ Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) =
θ′.

▶ Otherwise, set θ(i+1) = θ(i).
Can this be applicable for state-space models?
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Parameter inference
A basic approach based on Metropolis-Hastings

The issue:
▶ We do not know p(y1:t|θ) as this is an integral over x0:t:

p(y1:t|θ) =
∫

p(y1:t, x0:t|θ)dx0:t.

▶ We can approximate this integral using the particle filter:

pN (y1:t|θ) =
1

N

N∑
i=1

g(yt|x̄(i)t , θ).

▶ Remarkably, plugging in unbiased estimates in Metropolis-Hastings
ratios preserves the stationary measure (Andrieu et al., 2010).
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Parameter inference
particle Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
▶ Given θ(i), sample θ′ ∼ q(θ′|θ(i)).

▶ Compute the acceptance ratio

r(θ(i), θ′) =
pN (y1:t|θ′)p(θ′)q(θ(i)|θ′)

pN (y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

▶ Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) =
θ′.

▶ Otherwise, set θ(i+1) = θ(i).

This is called the particle Metropolis-Hastings algorithm.
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Parameter inference
particle Metropolis-Hastings

A few drawbacks of this approach:
▶ The algorithm is not very efficient as it requires a large number

of particles to obtain a good approximation of p(y1:t|θ).

▶ Also, for every parameter sample θ(i), a fresh run of the particle
filter is required.

We will now look at a completely online approach.
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Parameter inference
Nested particle filter

Let us discuss a meta-sampler that can be used to sample from
p(θ|y1:t). First, let us try to use a naive importance sampler to
sample from p(θ|y1:t) (forget for now about latents x1:t).

How to develop an importance sampler for evolving p(θ|y1:t)?
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Parameter inference
Nested particle filter

Let us recall the recursions:

p(θ|y1:t) =
p(yt|θ)p(θ|y1:t−1)

p(yt|y1:t−1)
.

With these recursions in mind, we can indeed naively try to develop
an importance sampler.
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Parameter inference
Nested particle filter

Let us choose a proposal: q(θ) and then perform importance sam-
pling:
▶ Sample θ(i) ∼ q(θ) for i = 1, . . . , N .

▶ Compute the importance weights:

W
(i)
t =

p(y1:t|θ(i))p(θ(i))
q(θ(i))

.

▶ Normalise the weights:

w
(i)
t =

W
(i)
t∑N

j=1W
(j)
t

.

Can we get a sequential structure in weights as in the particle filter
case?
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Parameter inference
Nested particle filter

We have

W0:t(θ) =
p(y1:t|θ)p(θ)

q(θ)
.

Unlike the particle filter case, we do not have a sequential structure
in the weights. One can try

W0:t(θ) = p(yt|y1:t−1, θ)W0:t−1(θ).

This means that we have to unroll it back to time zero:

W0:t(θ) = p(yt|y1:t−1, θ)p(yt−1|y1:t−2, θ) · · ·
p(θ)

q(θ)
.
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Parameter inference
Nested particle filter

Given

W0:t(θ) = p(yt|y1:t−1, θ)p(yt−1|y1:t−2, θ) · · ·
p(θ)

q(θ)
.

the practical weight computation would be:

W
(i)
0 =

p(θ(i))

q(θ(i))
,

and

W
(i)
t = p(yt|y1:t−1, θ

(i))W
(i)
t−1.
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Parameter inference
Nested particle filter

This would cause multiple issues:
▶ The algorithm is essentially putting samples into the space and

just recomputing weights.

▶ Samples do not move!
▶ Even if we introduce resampling at every stage, then still have

the same problem.
▶ Samples do not move + are resampled.
▶ Only one sample will survive.

▶ We need to introduce a new mechanism to move the samples
around.

21
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Parameter inference
Nested particle filter

We need a way to shake the particles, without introducing too much
error.
▶ Use a jittering kernel (Crisan and Míguez, 2014):

κ(dθ|θ′) = (1− ϵN )δθ′(dθ) + ϵNτ(dθ|θ′), (1)

to sample new particles θ
(i)
t ∼ κ(·|θ(i)t−1).

▶ We usually choose ϵN ≤ 1√
N

.

▶ τ can be simple, i.e., multivariate Gaussian or multivariate t
distribution.

22



Parameter inference
Nested particle filter

The jittered sampler:
▶ Sample θ̄

(i)
t ∼ κ(·|θ(i)t−1) for i = 1, . . . , N .

▶ Compute the importance weights:

W
(i)
t = p(yt|y1:t−1, θ̄

(i)
t ),

▶ Normalise the weights:

w
(i)
t =

W
(i)
t∑N

j=1W
(j)
t

.

▶ Resample:

θ
(i)
t ∼

N∑
j=1

w
(j)
t δ

θ̄
(j)
t
(dθ).
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Parameter inference
Nested particle filter

As you could guess, “compute the importance weights” step should
be done using a particle filter.
▶ Sample θ̄

(i)
t ∼ κ(·|θ(i)t−1) for i = 1, . . . , N .

▶ Compute the importance weights:

W
(i)
t = pM (yt|y1:t−1, θ̄

(i)
t ),

using a particle filter with M particles.
▶ Normalise the weights:

w
(i)
t =

W
(i)
t∑N

j=1W
(j)
t

.

▶ Resample:

θ
(i)
t ∼

N∑
j=1

w
(j)
t δ

θ̄
(j)
t
(dθ).

This algorithm is purely online.
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Parameter inference
Nested particle filter

Both approaches (pMCMC and nested PF) rely on unbiased marginal
likelihoods.

Therefore, the unbiasedness property of PFs are crucial.
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So far, we have looked at plenty of algorithms, but little theory.

We will now prove L2 bounds for
▶ Perfect Monte Carlo
▶ Importance sampling
▶ Particle filters.

26



So far, we have looked at plenty of algorithms, but little theory.

We will now prove L2 bounds for

▶ Perfect Monte Carlo
▶ Importance sampling
▶ Particle filters.

26



So far, we have looked at plenty of algorithms, but little theory.

We will now prove L2 bounds for
▶ Perfect Monte Carlo

▶ Importance sampling
▶ Particle filters.

26



So far, we have looked at plenty of algorithms, but little theory.

We will now prove L2 bounds for
▶ Perfect Monte Carlo
▶ Importance sampling

▶ Particle filters.

26



So far, we have looked at plenty of algorithms, but little theory.

We will now prove L2 bounds for
▶ Perfect Monte Carlo
▶ Importance sampling
▶ Particle filters.

26



So far, we have looked at plenty of algorithms, but little theory.

We will now prove L2 bounds for
▶ Perfect Monte Carlo
▶ Importance sampling
▶ Particle filters.

26



Perfect Monte Carlo

Let us assume that we have samples x(k) ∼ π and we build the
estimator

(φ, π) ≈ (φ, πN ) =
1

N

N∑
k=1

φ(x(k)).

Theorem 1 (Perfect Monte Carlo)

Let φ be a bounded function. Then, for any N ≥ 1,

∥(φ, π)− (φ, πN )∥2 ≤
2∥φ∥∞√

N
.
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Perfect Monte Carlo

Proof.
We first provide the proof for p = 2 for simplicity. We rewrite the
L2 norm using its definition as,

∥∥(φ, π)− (φ, πN )
∥∥
2
=

∥∥∥∥∥(φ, π)− 1

N

N∑
k=1

φ
(
x(k)

)∥∥∥∥∥
2

= E

∣∣∣∣∣(φ, π)− 1

N

N∑
k=1

φ
(
x(k)

)∣∣∣∣∣
2
1/2

.

Writing explicitly, we have,

E

∣∣∣∣∣(φ, π)− 1

N

N∑
k=1

φ
(
x(k)

)∣∣∣∣∣
2
 =

1

N2
E

∣∣∣∣∣
N∑
i=1

(
φ(x(i))− (φ, π)

)∣∣∣∣∣
2
 .
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Perfect Monte Carlo

(cont.)

We define S(i) = φ(x(i))− (φ, π) and note that E[S(i)] = 0 and
S(i) are independent random variables. We therefore have,

E

∣∣∣∣∣(φ, π)− 1

N

N∑
k=1

φ
(
x(k)

)∣∣∣∣∣
2
 =

1

N2
E

∣∣∣∣∣
N∑
i=1

S(i)

∣∣∣∣∣
2
 ,

=
1

N2

N∑
i=1

E
[∣∣∣S(i)

∣∣∣2] ≤ N4∥φ∥2∞
N2

,

since
∣∣S(i)

∣∣ = ∣∣φ(x(i))− (φ, π)
∣∣ ≤ 2∥φ∥∞. Therefore, we have,

∥∥(φ, π)− (φ, πN )
∥∥
2
≤ 2∥φ∥∞√

N
,

■
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Perfect Monte Carlo

Let us assume that we have samples x(k) ∼ π and we build the
estimator

(φ, π) ≈ (φ, πN ) =
1

N

N∑
k=1

φ(x(k)).

Theorem 2 (Perfect Monte Carlo)

If varπ(φ) < ∞, then for any N ≥ 1,

∥(φ, π)− (φ, πN )∥2 ≤
√

varπ(φ)√
N

.

where

varπ(φ) =
∫

φ2(x)π(dx)−
(∫

φ(x)π(dx)

)2

.
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Perfect Monte Carlo

Proof.
Since (φ, πN ) is unbiased, then MSE is equal to the variance of the
estimator. We therefore have,

E
[(
(φ, π)− (φ, πN )

)2]
= varπ[(φ, πN )],

=
1

N2

N∑
i=1

varπ[φ(x(i))],

=
1

N
varπ[φ(X)].

■
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Importance Sampling
Self-normalised IS (SNIS)

Consider the self-normalising IS estimator for (φ, π):

(φ, π̃N ) =

N∑
i=1

w(i)φ(x(i)),

where w(i) = W(i)/
∑N

j=1W
(j) and W(i) = Π(x(i))/q(x(i)).
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Importance Sampling
Self-normalised IS (SNIS)

Theorem 3
Let φ be a bounded function. Then, for any N ≥ 1,

∥(φ, π)− (φ, π̃N )∥2 ≤
2∥φ∥∞

√
ρ

√
N

.

where

ρ = χ2(π||q) + 1.

where

χ2(π||q) =
∫ (

π(x)

q(x)
− 1

)2

q(x)dx.

Suggests that the discrepancy between π and q controls the L2 error.
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Importance Sampling
Self-normalised IS (SNIS), MSE bound

Proof. We first note the following inequalities,

|(φ, π)− (φ, π̃N )| =
∣∣∣∣(φW, q)

(W, q)
− (φW, qN )

(W, qN )

∣∣∣∣
≤

∣∣(φW, q)− (φW, qN )
∣∣

|(W, q)|
+ |(φW, qN )|

∣∣∣∣ 1

(W, q)
− 1

(W, qN )

∣∣∣∣
=

∣∣(φW, q)− (φW, qN )
∣∣

|(W, q)|
+ ∥φ∥∞|(W, qN )|

∣∣∣∣(W, qN )− (W, q)

(W, q)(W, qN )

∣∣∣∣
=

∣∣(φW, q)− (φW, qN )
∣∣

(W, q)
+

∥φ∥∞|(W, qN )− (W, q)|
(W, q)

.
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We take squares of both sides and apply the inequality (a + b)2 ≤
2(a2 + b2) to further bound the rhs,

· · · ≤ 2

∣∣(φW, q)− (φW, qN )
∣∣2

(W, q)2
+ 2

∥φ∥2∞|(W, qN )− (W, q)|2

(W, q)2

We can now take the expectation of both sides,

E
[(
(φ, π)− (φ, π̃N )

)2] ≤
2E

[(
(φW, q)− (φW, qN )

)2]
(W, q)2

+

2∥φ∥2∞E
[(
(W, qN )− (W, q)

)2]
(W, q)2

.

Note that, both terms in the right hand side are perfect Monte Carlo
estimates of the integrals.
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Bounding the MSE of these integrals yields

· · · ≤ 2

N

(φ2W 2, q)− (φW, q)2

(W, q)2
+

2∥φ∥2∞
N

(W 2, q)− (W, q)2

(W, q)2
,

≤ 2∥φ∥2∞
N

(W 2, q)

(W, q)2
+

2∥φ∥2∞
N

(W 2, q)− (W, q)2

(W, q)2
.

Therefore, we can straightforwardly write,

E
[(
(φ, π)− (φ, π̃N )

)2] ≤4∥φ∥2∞
(W, q)2

(W 2, q)

N
.
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E
[(
(φ, π)− (φ, π̃N )

)2] ≤4∥φ∥2∞
(W, q)2

(W 2, q)

N
.

Now it remains to show the relation of the bound to χ2 divergence.
Note that,

(W 2, q)

(W, q)2
=

∫ Π2(x)
q2(x)

q(x)dx(∫ Π(x)
q(x) q(x)dx

)2

=
Z2

∫ π2(x)
q2(x)

q(x)dx

Z2
(∫

πdx
)2

= Eq

[
π2(X)

q2(X)

]
:= ρ.

Note that ρ is not exactly χ2 divergence, which is defined as ρ− 1.
Plugging everything into our bound, we have the result,

E
[(
(φ, π)− (φ, πN )

)2] ≤4∥φ∥2∞ρ

N
.
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L2 bound for the particle filter

Theorem 4
Let φ be a bounded function and πN

t be particle filter approximations
of πt. Then, for any N ≥ 1,

∥(φ, πt)− (φ, πN
t )∥2 ≤

ct∥φ∥∞√
N

.

where ct < ∞ is a constant independent of N .
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L2 bound for the particle filter

This is an induction based proof. At time t = 0, particle filter just
samples from the prior of the model π0 and by perfect Monte Carlo
result, we readily have

∥(φ, π0)− (φ, πN
0 )∥2 ≤

c0∥φ∥∞√
N

.

where c0 = 2. Therefore, as an induction hypothesis, we assume

∥(φ, πt−1)− (φ, πN
t−1)∥2 ≤

ct−1∥φ∥∞√
N

.

Particle filter takes three steps. We need to bound them separately.
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L2 bound for the particle filter

Prediction/sampling step: Recall the predictive measure

ξ(dxt) =

∫
τ(dxt|xt−1)π(dxt−1).

We need to next prove that the predictive approximation

ξN (dxt) =
1

N

N∑
i=1

δ
x̄
(i)
t
(dxt),

where x̄
(i)
t ∼ τ(dxt|x(i)t−1) satisfies the L2 bound

∥(φ, ξN )− (φ, ξ)∥2 ≤
c1,t∥φ∥∞√

N
.
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L2 bound for the particle filter

∥(φ, ξN )− (φ, ξ)∥2 =
∥∥(φ, ξNt )− (φ, τtπt−1)

∥∥
2

≤
∥∥(φ, ξNt )− (φ, τtπ

N
t−1)

∥∥
2

+
∥∥(φ, τtπN

t−1)− (φ, τtπt−1)
∥∥
2
,

where

(φ, τtπ
N
t−1) =

1

N

N∑
i=1

(φ, τ
x
(i)
t−1

t ).

We have to now separately bound two terms.
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L2 bound for the particle filter

For the first term, we introduce the σ-algebra generated by the ran-
dom variables x(i)0:t and x̄

(i)
1:t, i = 1, . . . , N , denoted Ft = σ(x

(i)
0:t, x̄

(i)
1:t, i =

1, . . . , N). Since πN
t−1 is measurable w.r.t. Ft−1, we can write

E[(φ, ξNt )|Ft−1] =
1

N

N∑
i=1

(φ, τ
x
(i)
t−1

t ) = (φ, τtπ
N
t−1).

Next, we define the random variables S
(i)
t = φ(x̄

(i)
t ) − (φ, τtπ

N
t−1)

and note that, conditional on Ft−1, S
(i)
t , i = 1, . . . , N are zero-

mean and independent. Then, the approximation error of ξNt can be
written as,

E[
∣∣(φ, ξNt )− (φ, τtπ

N
t−1)

∣∣2 |Ft−1] = E

∣∣∣∣∣ 1N
N∑
i=1

S
(i)
t

∣∣∣∣∣
2 ∣∣∣∣∣Ft−1

 .
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L2 bound for the particle filter

Using the fact that S(i)
t are conditionally zero-mean and independent,

we can write,

E

∣∣∣∣∣ 1N
N∑
i=1

S
(i)
t

∣∣∣∣∣
2 ∣∣∣∣∣Ft−1

 =
1

N2
E

[
N∑
i=1

∣∣∣S(i)
t

∣∣∣2 ∣∣∣∣∣Ft−1

]
,

Moreover, since
∣∣∣S(i)

t

∣∣∣ = ∣∣∣φ(x̄(i)t )− (φ, τtπ
N
t−1)

∣∣∣ ≤ 2∥φ∥∞, we have,

E

∣∣∣∣∣ 1N
N∑
i=1

S
(i)
t

∣∣∣∣∣
2 ∣∣∣∣∣Ft−1

 ≤ 1

N2
N4∥φ∥2∞ =

4∥φ∥2∞
N

.

If we take unconditional expectations on both sides of the equation
above, then we arrive at

∥(φ, ξNt )− (φ, τtπ
N
t−1)∥2 ≤

c̃1∥φ∥∞√
N

, (2)

where c̃1 = 2 is a constant independent of N .
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L2 bound for the particle filter

To handle the second term, we define (φ̄, πt−1) = (φ, τtπt−1) where
φ̄ ∈ B(X) and given by,

φ̄(x) = (φ, τxt ).

We also write (φ̄, πN
t−1) = (φ, τtπ

N
t−1). Since ∥φ̄∥∞ ≤ ∥φ∥∞, the

induction hypothesis leads,

∥(φ, τtπN
t−1)− (φ, τtπt−1)∥2 = ∥(φ̄, πN

t−1)− (φ̄, πt−1)∥2

≤ ct−1∥φ∥∞√
N

, (3)

where ct−1 is a constant independent of N . Combining (2) and (3)
yields, ∥∥(φ, ξNt )− (φ, ξt)

∥∥
2
≤ c1,t∥φ∥∞√

N
(4)

where c1,t = ct−1 + 2 < ∞ is a constant independent of N .
44



L2 bound for the particle filter

Weighting step: Next, we aim at bounding ∥(φ, πt) − (φ, π̃N
t )∥2

using (4). We have the weighted random measure,

π̃N
t =

N∑
i=1

w
(i)
t δ

x̄
(i)
t

where w
(i)
t =

gt(x̄
(i)
t )∑N

i=1 gt(x̄
(i)
t )

.

The integrals computed with respect to the weighted measure π̃N
t

takes the form,

(φ, π̃N
t ) =

(φgt, ξ
N )

(gt, ξNt )
. (5)

On the other hand, using Bayes theorem, integrals with respect to
the optimal filter can also be written in a similar form as,

(φ, πt) =
(φgt, ξt)

(gt, ξt)
. (6)
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L2 bound for the particle filter

Using a similar argument as in the proof of importance sampling∣∣(φ, π̃N
t )− (φ, πt)

∣∣ ≤ 1

(gt, ξt)

(
∥φ∥∞

∣∣(gt, ξt)− (gt, ξ
N
t )

∣∣
+
∣∣(φgt, ξt)− (φgt, ξ

N
t )

∣∣) , (7)

where (gt, ξt) > 0 by assumption. Using Minkowski’s inequality, we
can deduce from (7) that∥∥(φ, π̃N

t )− (φ, πt)
∥∥
2
≤ 1

(gt, ξt)

(
∥φ∥∞

∥∥(gt, ξt)− (gt, ξ
N
t )

∥∥
2

+
∥∥(φgt, ξt)− (φgt, ξ

N
t )

∥∥
2

)
. (8)
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L2 bound for the particle filter

Noting that we have ∥φgt∥∞ ≤ ∥φ∥∞∥gt∥∞, (4) and (8) together
yield,

∥∥(φ, πt)− (φ, π̃N
t )

∥∥
2
≤ c2,t∥φ∥∞√

N
, (9)

where

c2,t,p =
2∥gt∥∞c1,t
(gt, ξt)

< ∞

is a finite constant independent of N .
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L2 bound for the particle filter

Resampling step: Finally, since the random variables which are used
to construct πN

t are sampled i.i.d from π̃N
t , the argument for the

base case can also be applied here to yield,

∥∥(φ, π̃N
t )− (φ, πN

t )
∥∥
2
≤ c3,t∥φ∥∞√

N
, (10)

where c3,t < ∞ is a constant independent of N . Combining bounds
(9) and (10) to obtain the final result, with ct = c2,t + c3,t < ∞,
concludes the proof. □
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Thanks!
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