
Advanced Computational Methods in Statistics
Lecture 5

O. Deniz Akyildiz

LTCC Advanced Course

December 11, 2023



y1 y2 · · · yk

x1x0 x2 · · · xk

θ

We are given the model

x0 ∼ µθ(x0),

xt|xt−1 ∼ τθ(xt|xt−1),

yt|xt ∼ gθ(yt|xt).

We looked at estimating θ given y1:T .

2



▶ We have seen maximum likelihood approaches in the last session
that would solve

θ⋆ ∈ argmax
θ∈Θ

log p(y1:T |θ).

where

p(y1:T |θ) =
∫

p(y1:T , x0:T |θ)dx0:T .

Today, we will first look at the Bayesian approach to this problem.

3



Problem definition
Recap – the model, the notation

y1 y2 · · · yk

x1x0 x2 · · · xk

θ

We are given the model

θ ∼ p(θ),

x0 ∼ µθ(x0),

xt|xt−1 ∼ τ(xt|xt−1, θ),

yt|xt ∼ g(yt|xt, θ).

We aim at sampling from p(θ|y1:T ).
4



State-space models
Recall: Algorithmic principle

We are interested in estimating expectations,

(φ, πt) =

∫
φ(xt)πt(xt|y1:t)dxt =

∫
φ(xt)πt(dxt),

sequentially as new data arrives.

y1 y2 . . .

x1x0 x2 . . . xt

yt

Algorithm:
Predict

ξt(dxt) =

∫
πt−1(dxt−1)τt(dxt|xt−1)

Update

πt(dxt) = ξt(dxt)
gt(yt|xt)

p(yt|y1:t−1)
.

5



Particle filters
Reminder

A general algorithm to estimate expectations of any test function
φ(xt) given y1:t.
▶ Sampling: draw

x̄
(i)
t ∼ τθ(dxt|x

(i)
t−1)

independently for every i = 1, . . . , N .
▶ Weighting: compute

w
(i)
t = gθ(x̄

(i)
t )/Z̄N

t

for every i = 1, . . . , N , where Z̄N
t =

∑N
i=1 gθ(x̄

(i)
t ).

▶ Resampling: draw independently,

x
(i)
t ∼ π̃t(dx) :=

∑
i

w
(i)
t δ

x̄
(i)
t
(dx) for i = 1, ..., N.

πN
t−1 →︸︷︷︸

sampling

ξNt →︸︷︷︸
weighting

π̃N
t →︸︷︷︸

resampling

πN
t .

6



Bootstrap particle filter
Marginal likelihoods

Another quantity BPF can estimate is the marginal likelihood:

p(y1:t|θ) =
∫

p(y1:t, x0:t|θ)dx0:t.

This quantity is useful for model selection and model comparison.

7



Bootstrap particle filter
Marginal likelihoods

Recall that we have tbe factorisation:

p(y1:t|θ) =
t∏

k=1

p(yk|y1:k−1, θ).

where

p(yt|y1:t−1, θ) =

∫
g(yt|xt, θ)ξ(xt|y1:t−1, θ)dxt.

Recall that we can obtain the approximation of ξ(xt|y1:t−1, θ) by the
particle filter using predictive particles x̄

(i)
t ∼ τ(xt|x(i)t−1, θ) as

pN (dxt|y1:t−1, θ) =
1

N

N∑
i=1

δ
x̄
(i)
t
(dxt).

8



Bootstrap particle filter
Marginal likelihoods

Therefore, given

pNθ (dxt|y1:t−1, θ) =
1

N

N∑
i=1

δ
x̄
(i)
t
(dxt),

we get

pN (yt|y1:t−1, θ) =
1

N

N∑
i=1

g(yt|x̄(i)t , θ).

As a result, we can approximate

pN (y1:t|θ) =
t∏

k=1

pN (yk|y1:k−1, θ).

9



Bootstrap particle filter
Marginal likelihoods

Remarkably, this estimate is unbiased:

E[pN (y1:t|θ)] = p(y1:t|θ),

for every fixed θ.

10



Parameter inference
A basic approach based on Metropolis-Hastings

Let us assume that we would like to sample from p(θ|y1:t)

▶ We would normally use the factorisation

p(θ|y1:t) ∝ p(y1:t|θ)p(θ).

▶ Based on this, we could design a Metropolis-Hastings algorithm
(with any proposal).

11



Parameter inference
A basic approach based on Metropolis-Hastings

Let us assume that we would like to sample from p(θ|y1:t)
▶ We would normally use the factorisation

p(θ|y1:t) ∝ p(y1:t|θ)p(θ).

▶ Based on this, we could design a Metropolis-Hastings algorithm
(with any proposal).

11



Parameter inference
A basic approach based on Metropolis-Hastings

Let us assume that we would like to sample from p(θ|y1:t)
▶ We would normally use the factorisation

p(θ|y1:t) ∝ p(y1:t|θ)p(θ).

▶ Based on this, we could design a Metropolis-Hastings algorithm
(with any proposal).

11



Parameter inference
A basic approach based on Metropolis-Hastings

Let us assume that we would like to sample from p(θ|y1:t)
▶ We would normally use the factorisation

p(θ|y1:t) ∝ p(y1:t|θ)p(θ).

▶ Based on this, we could design a Metropolis-Hastings algorithm
(with any proposal).

11



Parameter inference
A basic approach based on Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
▶ Given θ(i), sample θ′ ∼ q(θ′|θ(i)).

▶ Compute the acceptance ratio

r(θ(i), θ′) =
p(y1:t|θ′)p(θ′)q(θ(i)|θ′)

p(y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

▶ Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) =
θ′.

▶ Otherwise, set θ(i+1) = θ(i).
Can this be applicable for state-space models?

12



Parameter inference
A basic approach based on Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
▶ Given θ(i), sample θ′ ∼ q(θ′|θ(i)).
▶ Compute the acceptance ratio

r(θ(i), θ′) =
p(y1:t|θ′)p(θ′)q(θ(i)|θ′)

p(y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

▶ Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) =
θ′.

▶ Otherwise, set θ(i+1) = θ(i).
Can this be applicable for state-space models?

12



Parameter inference
A basic approach based on Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
▶ Given θ(i), sample θ′ ∼ q(θ′|θ(i)).
▶ Compute the acceptance ratio

r(θ(i), θ′) =
p(y1:t|θ′)p(θ′)q(θ(i)|θ′)

p(y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

▶ Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) =
θ′.

▶ Otherwise, set θ(i+1) = θ(i).
Can this be applicable for state-space models?

12



Parameter inference
A basic approach based on Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
▶ Given θ(i), sample θ′ ∼ q(θ′|θ(i)).
▶ Compute the acceptance ratio

r(θ(i), θ′) =
p(y1:t|θ′)p(θ′)q(θ(i)|θ′)

p(y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

▶ Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) =
θ′.

▶ Otherwise, set θ(i+1) = θ(i).

Can this be applicable for state-space models?

12



Parameter inference
A basic approach based on Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
▶ Given θ(i), sample θ′ ∼ q(θ′|θ(i)).
▶ Compute the acceptance ratio

r(θ(i), θ′) =
p(y1:t|θ′)p(θ′)q(θ(i)|θ′)

p(y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

▶ Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) =
θ′.

▶ Otherwise, set θ(i+1) = θ(i).
Can this be applicable for state-space models?

12



Parameter inference
A basic approach based on Metropolis-Hastings

The issue:
▶ We do not know p(y1:t|θ) as this is an integral over x0:t:

p(y1:t|θ) =
∫

p(y1:t, x0:t|θ)dx0:t.

▶ We can approximate this integral using the particle filter:

pN (y1:t|θ) =
1

N

N∑
i=1

g(yt|x̄(i)t , θ).

▶ Remarkably, plugging in unbiased estimates in Metropolis-Hastings
ratios preserves the stationary measure (Andrieu et al., 2010).

13



Parameter inference
A basic approach based on Metropolis-Hastings

The issue:
▶ We do not know p(y1:t|θ) as this is an integral over x0:t:

p(y1:t|θ) =
∫

p(y1:t, x0:t|θ)dx0:t.

▶ We can approximate this integral using the particle filter:

pN (y1:t|θ) =
1

N

N∑
i=1

g(yt|x̄(i)t , θ).

▶ Remarkably, plugging in unbiased estimates in Metropolis-Hastings
ratios preserves the stationary measure (Andrieu et al., 2010).

13



Parameter inference
A basic approach based on Metropolis-Hastings

The issue:
▶ We do not know p(y1:t|θ) as this is an integral over x0:t:

p(y1:t|θ) =
∫

p(y1:t, x0:t|θ)dx0:t.

▶ We can approximate this integral using the particle filter:

pN (y1:t|θ) =
1

N

N∑
i=1

g(yt|x̄(i)t , θ).

▶ Remarkably, plugging in unbiased estimates in Metropolis-Hastings
ratios preserves the stationary measure (Andrieu et al., 2010).

13



Parameter inference
particle Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
▶ Given θ(i), sample θ′ ∼ q(θ′|θ(i)).

▶ Compute the acceptance ratio

r(θ(i), θ′) =
pN (y1:t|θ′)p(θ′)q(θ(i)|θ′)

pN (y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

▶ Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) =
θ′.

▶ Otherwise, set θ(i+1) = θ(i).

This is called the particle Metropolis-Hastings algorithm.

14



Parameter inference
particle Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
▶ Given θ(i), sample θ′ ∼ q(θ′|θ(i)).
▶ Compute the acceptance ratio

r(θ(i), θ′) =
pN (y1:t|θ′)p(θ′)q(θ(i)|θ′)

pN (y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

▶ Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) =
θ′.

▶ Otherwise, set θ(i+1) = θ(i).

This is called the particle Metropolis-Hastings algorithm.

14



Parameter inference
particle Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
▶ Given θ(i), sample θ′ ∼ q(θ′|θ(i)).
▶ Compute the acceptance ratio

r(θ(i), θ′) =
pN (y1:t|θ′)p(θ′)q(θ(i)|θ′)

pN (y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

▶ Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) =
θ′.

▶ Otherwise, set θ(i+1) = θ(i).

This is called the particle Metropolis-Hastings algorithm.

14



Parameter inference
particle Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
▶ Given θ(i), sample θ′ ∼ q(θ′|θ(i)).
▶ Compute the acceptance ratio

r(θ(i), θ′) =
pN (y1:t|θ′)p(θ′)q(θ(i)|θ′)

pN (y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

▶ Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) =
θ′.

▶ Otherwise, set θ(i+1) = θ(i).

This is called the particle Metropolis-Hastings algorithm.

14



Parameter inference
particle Metropolis-Hastings

Recall the Metropolis-Hastings algorithm for this case:
▶ Given θ(i), sample θ′ ∼ q(θ′|θ(i)).
▶ Compute the acceptance ratio

r(θ(i), θ′) =
pN (y1:t|θ′)p(θ′)q(θ(i)|θ′)

pN (y1:t|θ(i))p(θ(i))q(θ′|θ(i))
.

▶ Accept θ′ with probability min{1, r(θ(i), θ′)} and set θ(i+1) =
θ′.

▶ Otherwise, set θ(i+1) = θ(i).

This is called the particle Metropolis-Hastings algorithm.

14



Parameter inference
particle Metropolis-Hastings

A few drawbacks of this approach:
▶ The algorithm is not very efficient as it requires a large number

of particles to obtain a good approximation of p(y1:t|θ).

▶ Also, for every parameter sample θ(i), a fresh run of the particle
filter is required.

We will now look at a completely online approach.

15



Parameter inference
particle Metropolis-Hastings

A few drawbacks of this approach:
▶ The algorithm is not very efficient as it requires a large number

of particles to obtain a good approximation of p(y1:t|θ).
▶ Also, for every parameter sample θ(i), a fresh run of the particle

filter is required.

We will now look at a completely online approach.

15



Parameter inference
particle Metropolis-Hastings

A few drawbacks of this approach:
▶ The algorithm is not very efficient as it requires a large number

of particles to obtain a good approximation of p(y1:t|θ).
▶ Also, for every parameter sample θ(i), a fresh run of the particle

filter is required.

We will now look at a completely online approach.

15



Parameter inference
Nested particle filter

Let us discuss a meta-sampler that can be used to sample from
p(θ|y1:t). First, let us try to use a naive importance sampler to
sample from p(θ|y1:t) (forget for now about latents x1:t).

How to develop an importance sampler for evolving p(θ|y1:t)?

16



Parameter inference
Nested particle filter

Let us recall the recursions:

p(θ|y1:t) =
p(yt|θ)p(θ|y1:t−1)

p(yt|y1:t−1)
.

With these recursions in mind, we can indeed naively try to develop
an importance sampler.

17



Parameter inference
Nested particle filter

Let us recall the recursions:

p(θ|y1:t) =
p(yt|θ)p(θ|y1:t−1)

p(yt|y1:t−1)
.

With these recursions in mind, we can indeed naively try to develop
an importance sampler.

17



Parameter inference
Nested particle filter

Let us choose a proposal: q(θ) and then perform importance sam-
pling:
▶ Sample θ(i) ∼ q(θ) for i = 1, . . . , N .

▶ Compute the importance weights:

W
(i)
t =

p(y1:t|θ(i))p(θ(i))
q(θ(i))

.

▶ Normalise the weights:

w
(i)
t =

W
(i)
t∑N

j=1W
(j)
t

.

Can we get a sequential structure in weights as in the particle filter
case?

18



Parameter inference
Nested particle filter

Let us choose a proposal: q(θ) and then perform importance sam-
pling:
▶ Sample θ(i) ∼ q(θ) for i = 1, . . . , N .
▶ Compute the importance weights:

W
(i)
t =

p(y1:t|θ(i))p(θ(i))
q(θ(i))

.

▶ Normalise the weights:

w
(i)
t =

W
(i)
t∑N

j=1W
(j)
t

.

Can we get a sequential structure in weights as in the particle filter
case?

18



Parameter inference
Nested particle filter

Let us choose a proposal: q(θ) and then perform importance sam-
pling:
▶ Sample θ(i) ∼ q(θ) for i = 1, . . . , N .
▶ Compute the importance weights:

W
(i)
t =

p(y1:t|θ(i))p(θ(i))
q(θ(i))

.

▶ Normalise the weights:

w
(i)
t =

W
(i)
t∑N

j=1W
(j)
t

.

Can we get a sequential structure in weights as in the particle filter
case?

18



Parameter inference
Nested particle filter

Let us choose a proposal: q(θ) and then perform importance sam-
pling:
▶ Sample θ(i) ∼ q(θ) for i = 1, . . . , N .
▶ Compute the importance weights:

W
(i)
t =

p(y1:t|θ(i))p(θ(i))
q(θ(i))

.

▶ Normalise the weights:

w
(i)
t =

W
(i)
t∑N

j=1W
(j)
t

.

Can we get a sequential structure in weights as in the particle filter
case?

18



Parameter inference
Nested particle filter

We have

W0:t(θ) =
p(y1:t|θ)p(θ)

q(θ)
.

Unlike the particle filter case, we do not have a sequential structure
in the weights. One can try

W0:t(θ) = p(yt|y1:t−1, θ)W0:t−1(θ).

This means that we have to unroll it back to time zero:

W0:t(θ) = p(yt|y1:t−1, θ)p(yt−1|y1:t−2, θ) · · ·
p(θ)

q(θ)
.

19



Parameter inference
Nested particle filter

We have

W0:t(θ) =
p(y1:t|θ)p(θ)

q(θ)
.

Unlike the particle filter case, we do not have a sequential structure
in the weights. One can try

W0:t(θ) = p(yt|y1:t−1, θ)W0:t−1(θ).

This means that we have to unroll it back to time zero:

W0:t(θ) = p(yt|y1:t−1, θ)p(yt−1|y1:t−2, θ) · · ·
p(θ)

q(θ)
.

19



Parameter inference
Nested particle filter

Given

W0:t(θ) = p(yt|y1:t−1, θ)p(yt−1|y1:t−2, θ) · · ·
p(θ)

q(θ)
.

the practical weight computation would be:

W
(i)
0 =

p(θ(i))

q(θ(i))
,

and

W
(i)
t = p(yt|y1:t−1, θ

(i))W
(i)
t−1.

20



Parameter inference
Nested particle filter

This would cause multiple issues:
▶ The algorithm is essentially putting samples into the space and

just recomputing weights.

▶ Samples do not move!
▶ Even if we introduce resampling at every stage, then still have

the same problem.
▶ Samples do not move + are resampled.
▶ Only one sample will survive.

▶ We need to introduce a new mechanism to move the samples
around.

21



Parameter inference
Nested particle filter

This would cause multiple issues:
▶ The algorithm is essentially putting samples into the space and

just recomputing weights.
▶ Samples do not move!

▶ Even if we introduce resampling at every stage, then still have
the same problem.
▶ Samples do not move + are resampled.
▶ Only one sample will survive.

▶ We need to introduce a new mechanism to move the samples
around.

21



Parameter inference
Nested particle filter

This would cause multiple issues:
▶ The algorithm is essentially putting samples into the space and

just recomputing weights.
▶ Samples do not move!

▶ Even if we introduce resampling at every stage, then still have
the same problem.

▶ Samples do not move + are resampled.
▶ Only one sample will survive.

▶ We need to introduce a new mechanism to move the samples
around.

21



Parameter inference
Nested particle filter

This would cause multiple issues:
▶ The algorithm is essentially putting samples into the space and

just recomputing weights.
▶ Samples do not move!

▶ Even if we introduce resampling at every stage, then still have
the same problem.
▶ Samples do not move + are resampled.

▶ Only one sample will survive.

▶ We need to introduce a new mechanism to move the samples
around.

21



Parameter inference
Nested particle filter

This would cause multiple issues:
▶ The algorithm is essentially putting samples into the space and

just recomputing weights.
▶ Samples do not move!

▶ Even if we introduce resampling at every stage, then still have
the same problem.
▶ Samples do not move + are resampled.
▶ Only one sample will survive.

▶ We need to introduce a new mechanism to move the samples
around.

21



Parameter inference
Nested particle filter

This would cause multiple issues:
▶ The algorithm is essentially putting samples into the space and

just recomputing weights.
▶ Samples do not move!

▶ Even if we introduce resampling at every stage, then still have
the same problem.
▶ Samples do not move + are resampled.
▶ Only one sample will survive.

▶ We need to introduce a new mechanism to move the samples
around.

21



Parameter inference
Nested particle filter

We need a way to shake the particles, without introducing too much
error.
▶ Use a jittering kernel (Crisan and Míguez, 2014):

κ(dθ|θ′) = (1− ϵN )δθ′(dθ) + ϵNτ(dθ|θ′), (1)

to sample new particles θ
(i)
t ∼ κ(·|θ(i)t−1).

▶ We usually choose ϵN ≤ 1√
N

.

▶ τ can be simple, i.e., multivariate Gaussian or multivariate t
distribution.

22



Parameter inference
Nested particle filter

The jittered sampler:
▶ Sample θ̄

(i)
t ∼ κ(·|θ(i)t−1) for i = 1, . . . , N .

▶ Compute the importance weights:

W
(i)
t = p(yt|y1:t−1, θ̄

(i)
t ),

▶ Normalise the weights:

w
(i)
t =

W
(i)
t∑N

j=1W
(j)
t

.

▶ Resample:

θ
(i)
t ∼

N∑
j=1

w
(j)
t δ

θ̄
(j)
t
(dθ).

23



Parameter inference
Nested particle filter

The jittered sampler:
▶ Sample θ̄

(i)
t ∼ κ(·|θ(i)t−1) for i = 1, . . . , N .

▶ Compute the importance weights:

W
(i)
t = p(yt|y1:t−1, θ̄

(i)
t ),

▶ Normalise the weights:

w
(i)
t =

W
(i)
t∑N

j=1W
(j)
t

.

▶ Resample:

θ
(i)
t ∼

N∑
j=1

w
(j)
t δ

θ̄
(j)
t
(dθ).

23



Parameter inference
Nested particle filter

The jittered sampler:
▶ Sample θ̄

(i)
t ∼ κ(·|θ(i)t−1) for i = 1, . . . , N .

▶ Compute the importance weights:

W
(i)
t = p(yt|y1:t−1, θ̄

(i)
t ),

▶ Normalise the weights:

w
(i)
t =

W
(i)
t∑N

j=1W
(j)
t

.

▶ Resample:

θ
(i)
t ∼

N∑
j=1

w
(j)
t δ

θ̄
(j)
t
(dθ).

23



Parameter inference
Nested particle filter

As you could guess, “compute the importance weights” step should
be done using a particle filter.
▶ Sample θ̄

(i)
t ∼ κ(·|θ(i)t−1) for i = 1, . . . , N .

▶ Compute the importance weights:

W
(i)
t = pM (yt|y1:t−1, θ̄

(i)
t ),

using a particle filter with M particles.
▶ Normalise the weights:

w
(i)
t =

W
(i)
t∑N

j=1W
(j)
t

.

▶ Resample:

θ
(i)
t ∼

N∑
j=1

w
(j)
t δ

θ̄
(j)
t
(dθ).

This algorithm is purely online.

24



Parameter inference
Nested particle filter

As you could guess, “compute the importance weights” step should
be done using a particle filter.
▶ Sample θ̄

(i)
t ∼ κ(·|θ(i)t−1) for i = 1, . . . , N .

▶ Compute the importance weights:

W
(i)
t = pM (yt|y1:t−1, θ̄

(i)
t ),

using a particle filter with M particles.

▶ Normalise the weights:

w
(i)
t =

W
(i)
t∑N

j=1W
(j)
t

.

▶ Resample:

θ
(i)
t ∼

N∑
j=1

w
(j)
t δ

θ̄
(j)
t
(dθ).

This algorithm is purely online.

24



Parameter inference
Nested particle filter

As you could guess, “compute the importance weights” step should
be done using a particle filter.
▶ Sample θ̄

(i)
t ∼ κ(·|θ(i)t−1) for i = 1, . . . , N .

▶ Compute the importance weights:

W
(i)
t = pM (yt|y1:t−1, θ̄

(i)
t ),

using a particle filter with M particles.
▶ Normalise the weights:

w
(i)
t =

W
(i)
t∑N

j=1W
(j)
t

.

▶ Resample:

θ
(i)
t ∼

N∑
j=1

w
(j)
t δ

θ̄
(j)
t
(dθ).

This algorithm is purely online.
24



Parameter inference
Nested particle filter

Both approaches (pMCMC and nested PF) rely on unbiased marginal
likelihoods.

Therefore, the unbiasedness property of PFs are crucial.

25



Parameter inference
Nested particle filter

Both approaches (pMCMC and nested PF) rely on unbiased marginal
likelihoods.

Therefore, the unbiasedness property of PFs are crucial.

25



So far, we have looked at plenty of algorithms, but little theory.

We will now prove L2 bounds for
▶ Perfect Monte Carlo
▶ Importance sampling
▶ Particle filters.

26



So far, we have looked at plenty of algorithms, but little theory.

We will now prove L2 bounds for

▶ Perfect Monte Carlo
▶ Importance sampling
▶ Particle filters.

26



So far, we have looked at plenty of algorithms, but little theory.

We will now prove L2 bounds for
▶ Perfect Monte Carlo

▶ Importance sampling
▶ Particle filters.

26



So far, we have looked at plenty of algorithms, but little theory.

We will now prove L2 bounds for
▶ Perfect Monte Carlo
▶ Importance sampling

▶ Particle filters.

26



So far, we have looked at plenty of algorithms, but little theory.

We will now prove L2 bounds for
▶ Perfect Monte Carlo
▶ Importance sampling
▶ Particle filters.

26



So far, we have looked at plenty of algorithms, but little theory.

We will now prove L2 bounds for
▶ Perfect Monte Carlo
▶ Importance sampling
▶ Particle filters.

26



Perfect Monte Carlo

Let us assume that we have samples x(k) ∼ π and we build the
estimator

(φ, π) ≈ (φ, πN ) =
1

N

N∑
k=1

φ(x(k)).

Theorem 1 (Perfect Monte Carlo)

Let φ be a bounded function. Then, for any N ≥ 1,

∥(φ, π)− (φ, πN )∥2 ≤
2∥φ∥∞√

N
.

27



Perfect Monte Carlo

Let us assume that we have samples x(k) ∼ π and we build the
estimator

(φ, π) ≈ (φ, πN ) =
1

N

N∑
k=1

φ(x(k)).

Theorem 1 (Perfect Monte Carlo)

Let φ be a bounded function. Then, for any N ≥ 1,

∥(φ, π)− (φ, πN )∥2 ≤
2∥φ∥∞√

N
.

27



Perfect Monte Carlo

Proof.
We first provide the proof for p = 2 for simplicity. We rewrite the
L2 norm using its definition as,

∥∥(φ, π)− (φ, πN )
∥∥
2
=

∥∥∥∥∥(φ, π)− 1

N

N∑
k=1

φ
(
x(k)

)∥∥∥∥∥
2

= E

∣∣∣∣∣(φ, π)− 1

N

N∑
k=1

φ
(
x(k)

)∣∣∣∣∣
2
1/2

.

Writing explicitly, we have,

E

∣∣∣∣∣(φ, π)− 1

N

N∑
k=1

φ
(
x(k)

)∣∣∣∣∣
2
 =

1

N2
E

∣∣∣∣∣
N∑
i=1

(
φ(x(i))− (φ, π)

)∣∣∣∣∣
2
 .

28



Perfect Monte Carlo

(cont.)

We define S(i) = φ(x(i))− (φ, π) and note that E[S(i)] = 0 and
S(i) are independent random variables. We therefore have,

E

∣∣∣∣∣(φ, π)− 1

N

N∑
k=1

φ
(
x(k)

)∣∣∣∣∣
2
 =

1

N2
E

∣∣∣∣∣
N∑
i=1

S(i)

∣∣∣∣∣
2
 ,

=
1

N2

N∑
i=1

E
[∣∣∣S(i)

∣∣∣2] ≤ N4∥φ∥2∞
N2

,

since
∣∣S(i)

∣∣ = ∣∣φ(x(i))− (φ, π)
∣∣ ≤ 2∥φ∥∞. Therefore, we have,

∥∥(φ, π)− (φ, πN )
∥∥
2
≤ 2∥φ∥∞√

N
,

■
29



Perfect Monte Carlo

Let us assume that we have samples x(k) ∼ π and we build the
estimator

(φ, π) ≈ (φ, πN ) =
1

N

N∑
k=1

φ(x(k)).

Theorem 2 (Perfect Monte Carlo)

If varπ(φ) < ∞, then for any N ≥ 1,

∥(φ, π)− (φ, πN )∥2 ≤
√

varπ(φ)√
N

.

where

varπ(φ) =
∫

φ2(x)π(dx)−
(∫

φ(x)π(dx)

)2

.

30



Perfect Monte Carlo

Let us assume that we have samples x(k) ∼ π and we build the
estimator

(φ, π) ≈ (φ, πN ) =
1

N

N∑
k=1

φ(x(k)).

Theorem 2 (Perfect Monte Carlo)

If varπ(φ) < ∞, then for any N ≥ 1,

∥(φ, π)− (φ, πN )∥2 ≤
√

varπ(φ)√
N

.

where

varπ(φ) =
∫

φ2(x)π(dx)−
(∫

φ(x)π(dx)

)2

.

30



Perfect Monte Carlo

Proof.
Since (φ, πN ) is unbiased, then MSE is equal to the variance of the
estimator. We therefore have,

E
[(
(φ, π)− (φ, πN )

)2]
= varπ[(φ, πN )],

=
1

N2

N∑
i=1

varπ[φ(x(i))],

=
1

N
varπ[φ(X)].

■

31



Importance Sampling
Self-normalised IS (SNIS)

Consider the self-normalising IS estimator for (φ, π):

(φ, π̃N ) =

N∑
i=1

w(i)φ(x(i)),

where w(i) = W(i)/
∑N

j=1W
(j) and W(i) = Π(x(i))/q(x(i)).

32



Importance Sampling
Self-normalised IS (SNIS)

Theorem 3
Let φ be a bounded function. Then, for any N ≥ 1,

∥(φ, π)− (φ, π̃N )∥2 ≤
2∥φ∥∞

√
ρ

√
N

.

where

ρ = χ2(π||q) + 1.

where

χ2(π||q) =
∫ (

π(x)

q(x)
− 1

)2

q(x)dx.

Suggests that the discrepancy between π and q controls the L2 error.
33



Importance Sampling
Self-normalised IS (SNIS), MSE bound

Proof. We first note the following inequalities,

|(φ, π)− (φ, π̃N )| =
∣∣∣∣(φW, q)

(W, q)
− (φW, qN )

(W, qN )

∣∣∣∣
≤

∣∣(φW, q)− (φW, qN )
∣∣

|(W, q)|
+ |(φW, qN )|

∣∣∣∣ 1

(W, q)
− 1

(W, qN )

∣∣∣∣
=

∣∣(φW, q)− (φW, qN )
∣∣

|(W, q)|
+ ∥φ∥∞|(W, qN )|

∣∣∣∣(W, qN )− (W, q)

(W, q)(W, qN )

∣∣∣∣
=

∣∣(φW, q)− (φW, qN )
∣∣

(W, q)
+

∥φ∥∞|(W, qN )− (W, q)|
(W, q)

.

34



We take squares of both sides and apply the inequality (a + b)2 ≤
2(a2 + b2) to further bound the rhs,

· · · ≤ 2

∣∣(φW, q)− (φW, qN )
∣∣2

(W, q)2
+ 2

∥φ∥2∞|(W, qN )− (W, q)|2

(W, q)2

We can now take the expectation of both sides,

E
[(
(φ, π)− (φ, π̃N )

)2] ≤
2E

[(
(φW, q)− (φW, qN )

)2]
(W, q)2

+

2∥φ∥2∞E
[(
(W, qN )− (W, q)

)2]
(W, q)2

.

Note that, both terms in the right hand side are perfect Monte Carlo
estimates of the integrals.

35



Bounding the MSE of these integrals yields

· · · ≤ 2

N

(φ2W 2, q)− (φW, q)2

(W, q)2
+

2∥φ∥2∞
N

(W 2, q)− (W, q)2

(W, q)2
,

≤ 2∥φ∥2∞
N

(W 2, q)

(W, q)2
+

2∥φ∥2∞
N

(W 2, q)− (W, q)2

(W, q)2
.

Therefore, we can straightforwardly write,

E
[(
(φ, π)− (φ, π̃N )

)2] ≤4∥φ∥2∞
(W, q)2

(W 2, q)

N
.

36



E
[(
(φ, π)− (φ, π̃N )

)2] ≤4∥φ∥2∞
(W, q)2

(W 2, q)

N
.

Now it remains to show the relation of the bound to χ2 divergence.
Note that,

(W 2, q)

(W, q)2
=

∫ Π2(x)
q2(x)

q(x)dx(∫ Π(x)
q(x) q(x)dx

)2

=
Z2

∫ π2(x)
q2(x)

q(x)dx

Z2
(∫

πdx
)2

= Eq

[
π2(X)

q2(X)

]
:= ρ.

Note that ρ is not exactly χ2 divergence, which is defined as ρ− 1.
Plugging everything into our bound, we have the result,

E
[(
(φ, π)− (φ, πN )

)2] ≤4∥φ∥2∞ρ

N
.

■ 37



L2 bound for the particle filter

Theorem 4
Let φ be a bounded function and πN

t be particle filter approximations
of πt. Then, for any N ≥ 1,

∥(φ, πt)− (φ, πN
t )∥2 ≤

ct∥φ∥∞√
N

.

where ct < ∞ is a constant independent of N .

38



L2 bound for the particle filter

This is an induction based proof. At time t = 0, particle filter just
samples from the prior of the model π0 and by perfect Monte Carlo
result, we readily have

∥(φ, π0)− (φ, πN
0 )∥2 ≤

c0∥φ∥∞√
N

.

where c0 = 2. Therefore, as an induction hypothesis, we assume

∥(φ, πt−1)− (φ, πN
t−1)∥2 ≤

ct−1∥φ∥∞√
N

.

Particle filter takes three steps. We need to bound them separately.

39



L2 bound for the particle filter

Prediction/sampling step: Recall the predictive measure

ξ(dxt) =

∫
τ(dxt|xt−1)π(dxt−1).

We need to next prove that the predictive approximation

ξN (dxt) =
1

N

N∑
i=1

δ
x̄
(i)
t
(dxt),

where x̄
(i)
t ∼ τ(dxt|x(i)t−1) satisfies the L2 bound

∥(φ, ξN )− (φ, ξ)∥2 ≤
c1,t∥φ∥∞√

N
.

40



L2 bound for the particle filter

∥(φ, ξN )− (φ, ξ)∥2 =
∥∥(φ, ξNt )− (φ, τtπt−1)

∥∥
2

≤
∥∥(φ, ξNt )− (φ, τtπ

N
t−1)

∥∥
2

+
∥∥(φ, τtπN

t−1)− (φ, τtπt−1)
∥∥
2
,

where

(φ, τtπ
N
t−1) =

1

N

N∑
i=1

(φ, τ
x
(i)
t−1

t ).

We have to now separately bound two terms.

41



L2 bound for the particle filter

For the first term, we introduce the σ-algebra generated by the ran-
dom variables x(i)0:t and x̄

(i)
1:t, i = 1, . . . , N , denoted Ft = σ(x

(i)
0:t, x̄

(i)
1:t, i =

1, . . . , N). Since πN
t−1 is measurable w.r.t. Ft−1, we can write

E[(φ, ξNt )|Ft−1] =
1

N

N∑
i=1

(φ, τ
x
(i)
t−1

t ) = (φ, τtπ
N
t−1).

Next, we define the random variables S
(i)
t = φ(x̄

(i)
t ) − (φ, τtπ

N
t−1)

and note that, conditional on Ft−1, S
(i)
t , i = 1, . . . , N are zero-

mean and independent. Then, the approximation error of ξNt can be
written as,

E[
∣∣(φ, ξNt )− (φ, τtπ

N
t−1)

∣∣2 |Ft−1] = E

∣∣∣∣∣ 1N
N∑
i=1

S
(i)
t

∣∣∣∣∣
2 ∣∣∣∣∣Ft−1

 .

42



L2 bound for the particle filter

Using the fact that S(i)
t are conditionally zero-mean and independent,

we can write,

E

∣∣∣∣∣ 1N
N∑
i=1

S
(i)
t

∣∣∣∣∣
2 ∣∣∣∣∣Ft−1

 =
1

N2
E

[
N∑
i=1

∣∣∣S(i)
t

∣∣∣2 ∣∣∣∣∣Ft−1

]
,

Moreover, since
∣∣∣S(i)

t

∣∣∣ = ∣∣∣φ(x̄(i)t )− (φ, τtπ
N
t−1)

∣∣∣ ≤ 2∥φ∥∞, we have,

E

∣∣∣∣∣ 1N
N∑
i=1

S
(i)
t

∣∣∣∣∣
2 ∣∣∣∣∣Ft−1

 ≤ 1

N2
N4∥φ∥2∞ =

4∥φ∥2∞
N

.

If we take unconditional expectations on both sides of the equation
above, then we arrive at

∥(φ, ξNt )− (φ, τtπ
N
t−1)∥2 ≤

c̃1∥φ∥∞√
N

, (2)

where c̃1 = 2 is a constant independent of N .
43



L2 bound for the particle filter

To handle the second term, we define (φ̄, πt−1) = (φ, τtπt−1) where
φ̄ ∈ B(X) and given by,

φ̄(x) = (φ, τxt ).

We also write (φ̄, πN
t−1) = (φ, τtπ

N
t−1). Since ∥φ̄∥∞ ≤ ∥φ∥∞, the

induction hypothesis leads,

∥(φ, τtπN
t−1)− (φ, τtπt−1)∥2 = ∥(φ̄, πN

t−1)− (φ̄, πt−1)∥2

≤ ct−1∥φ∥∞√
N

, (3)

where ct−1 is a constant independent of N . Combining (2) and (3)
yields, ∥∥(φ, ξNt )− (φ, ξt)

∥∥
2
≤ c1,t∥φ∥∞√

N
(4)

where c1,t = ct−1 + 2 < ∞ is a constant independent of N .
44



L2 bound for the particle filter

Weighting step: Next, we aim at bounding ∥(φ, πt) − (φ, π̃N
t )∥2

using (4). We have the weighted random measure,

π̃N
t =

N∑
i=1

w
(i)
t δ

x̄
(i)
t

where w
(i)
t =

gt(x̄
(i)
t )∑N

i=1 gt(x̄
(i)
t )

.

The integrals computed with respect to the weighted measure π̃N
t

takes the form,

(φ, π̃N
t ) =

(φgt, ξ
N )

(gt, ξNt )
. (5)

On the other hand, using Bayes theorem, integrals with respect to
the optimal filter can also be written in a similar form as,

(φ, πt) =
(φgt, ξt)

(gt, ξt)
. (6)

45



L2 bound for the particle filter

Using a similar argument as in the proof of importance sampling∣∣(φ, π̃N
t )− (φ, πt)

∣∣ ≤ 1

(gt, ξt)

(
∥φ∥∞

∣∣(gt, ξt)− (gt, ξ
N
t )

∣∣
+
∣∣(φgt, ξt)− (φgt, ξ

N
t )

∣∣) , (7)

where (gt, ξt) > 0 by assumption. Using Minkowski’s inequality, we
can deduce from (7) that∥∥(φ, π̃N

t )− (φ, πt)
∥∥
2
≤ 1

(gt, ξt)

(
∥φ∥∞

∥∥(gt, ξt)− (gt, ξ
N
t )

∥∥
2

+
∥∥(φgt, ξt)− (φgt, ξ

N
t )

∥∥
2

)
. (8)

46



L2 bound for the particle filter

Noting that we have ∥φgt∥∞ ≤ ∥φ∥∞∥gt∥∞, (4) and (8) together
yield,

∥∥(φ, πt)− (φ, π̃N
t )

∥∥
2
≤ c2,t∥φ∥∞√

N
, (9)

where

c2,t,p =
2∥gt∥∞c1,t
(gt, ξt)

< ∞

is a finite constant independent of N .

47



L2 bound for the particle filter

Resampling step: Finally, since the random variables which are used
to construct πN

t are sampled i.i.d from π̃N
t , the argument for the

base case can also be applied here to yield,

∥∥(φ, π̃N
t )− (φ, πN

t )
∥∥
2
≤ c3,t∥φ∥∞√

N
, (10)

where c3,t < ∞ is a constant independent of N . Combining bounds
(9) and (10) to obtain the final result, with ct = c2,t + c3,t < ∞,
concludes the proof. □

48



Thanks!

49



References I

Andrieu, Christophe, Arnaud Doucet, and Roman Holenstein (2010).
“Particle markov chain monte carlo methods”. In: Journal of the
Royal Statistical Society Series B: Statistical Methodology 72.3,
pp. 269–342.
Crisan, Dan and Joaquín Míguez (2014). “Particle-kernel estima-
tion of the filter density in state-space models”. In: Bernoulli 20.4,
pp. 1879–1929.

50


	References

