
Advanced Computational Methods in Statistics
Lecture 4

O. Deniz Akyildiz

LTCC Advanced Course

December 4, 2023

State-space models
problem definition

y1 y2 . . .

x1x0 x2 . . . xt

yt

The conditional independence structure of a state-space model.

(xt)t∈N+ : hidden signal process, (yt)t∈N+ the observation process.

x0 ∼ π0(dx0), (prior distribution)
xt|xt−1 ∼ τt(dxt|xt−1), (transition model)

yt|xt ∼ gt(yt|xt), (likelihood)

xt ∈ X where X is the state-space. We use: gt(xt) = gt(yt|xt).
2

State-space models
Algorithmic principle

We are interested in estimating expectations,

(φ, πt) =

∫
φ(xt)πt(xt|y1:t)dxt =

∫
φ(xt)πt(dxt),

sequentially as new data arrives.

y1 y2 . . .

x1x0 x2 . . . xt

yt

Algorithm:
Predict

ξt(dxt) =

∫
πt−1(dxt−1)τt(dxt|xt−1)

Update

πt(dxt) = ξt(dxt)
gt(yt|xt)

p(yt|y1:t−1)
.

3

Particle filters

Before we go into the details of the derivation, let us directly look at
the algorithm.

A general algorithm to estimate expectations of any
test function φ(xt) given y1:t.
▶ Sampling: draw

x̄
(i)
t ∼ τt(dxt|x(i)t−1)

independently for every i = 1, . . . , N .
▶ Weighting: compute

w
(i)
t = gt(x̄

(i)
t)/Z̄N

t

for every i = 1, . . . , N , where Z̄N
t =

∑N
i=1 gt(x̄

(i)
t).

▶ Resampling: draw independently,

x
(i)
t ∼ π̃t(dx) :=

∑
i

w
(i)
t δ

x̄
(i)
t
(dx) for i = 1, ..., N.

πN
t−1 →︸︷︷︸

sampling

ξNt →︸︷︷︸
weighting

π̃N
t →︸︷︷︸

resampling

πN
t .

4

Particle filters

Before we go into the details of the derivation, let us directly look at
the algorithm. A general algorithm to estimate expectations of any
test function φ(xt) given y1:t.
▶ Sampling: draw

x̄
(i)
t ∼ τt(dxt|x(i)t−1)

independently for every i = 1, . . . , N .
▶ Weighting: compute

w
(i)
t = gt(x̄

(i)
t)/Z̄N

t

for every i = 1, . . . , N , where Z̄N
t =

∑N
i=1 gt(x̄

(i)
t).

▶ Resampling: draw independently,

x
(i)
t ∼ π̃t(dx) :=

∑
i

w
(i)
t δ

x̄
(i)
t
(dx) for i = 1, ..., N.

πN
t−1 →︸︷︷︸

sampling

ξNt →︸︷︷︸
weighting

π̃N
t →︸︷︷︸

resampling

πN
t .

4

Particle filters
Derivation

The key recursion on the path distributions.

πt(x0:t|y1:t) =
γ(x0:t, y1:t)

p(y1:t)

=
γ(x0:t−1, y1:t−1)

p(y1:t−1)

τ(xt|xt−1)g(yt|xt)
p(yt|y1:t−1)

= πt(x0:t−1|y1:t−1)
τ(xt|xt−1)g(yt|xt)

p(yt|y1:t−1)
.

5

Particle filters
Derivation

Recall importance sampling: Assume that we aim at estimating ex-
pectations of a given density π, i.e., we would like to compute

(φ, π) =

∫
φ(x)π(x)dx.

We also assume that sampling from this density is not possible and
we can only evaluate the unnormalised density γ(x).

6

Particle filters
Derivation

One way to estimate this expectation is to sample from a proposal
measure q and rewrite the integral as

(φ, π) =

∫
φ(x)π(x)dx,

=

∫
φ(x)γ(x)q(x) q(x)dx∫ γ(x)

q(x) q(x)dx
,

≈
1
N

∑N
i=1 φ(x

(i))γ(x
(i))

q(x(i))

1
N

∑N
i=1

γ(x(i))

q(x(i))

, x(i) ∼ q, i = 1, . . . , N.

(1)

7

Particle filters
Derivation

Let us now introduce the unnormalised weight function

W (x) =
γ(x)

q(x)
. (2)

With this, the Eq. (1) becomes

(φ, πN) =
1
N

∑N
i=1 φ(x

(i))W (x(i))
1
N

∑N
i=1W (x(i))

, x(i) ∼ q, i = 1, . . . , N,

=

∑N
i=1 φ(x

(i))W(i)∑N
i=1W

(i)
, x(i) ∼ q, i = 1, . . . , N,

where W(i) = W (x(i)) are called the unnormalised weights.

8

Particle filters
Derivation

Finally, we can obtain the estimator in a more convenient form,

(φ, πN) =

N∑
i=1

w(i)φ(x(i)).

by introducing the normalised importance weights

w(i) =
W(i)∑N
i=1W

(i)
, (3)

for i = 1, . . . , N . We note that the particle approximation of π in
this case is given as

πN (dx) =

N∑
i=1

w(i)δx(i)(dx). (4)

In the following, we will derive the importance sampler aiming at
building particle approximations of πt(x0:t|y1:t) for a state-space
model.

9

Particle filters
Derivation

The proposal over the entire path space x0:t denoted q(x0:t). Note

γ(x0:t, y1:t) = µ(x0)

t∏
k=1

τ(xk|xk−1)g(yk|xk). (5)

This simply the joint distribution of all variables (x0:t, y1:t). Just as
in the regular importance sampling

W0:t(x0:t) =
γ(x0:t, y1:t)

q(x0:t)
.

10

Particle filters
Derivation

The proposal over the entire path space x0:t denoted q(x0:t). Note

γ(x0:t, y1:t) = µ(x0)

t∏
k=1

τ(xk|xk−1)g(yk|xk). (5)

This simply the joint distribution of all variables (x0:t, y1:t). Just as
in the regular importance sampling

W0:t(x0:t) =
γ(x0:t, y1:t)

q(x0:t)
.

10

Particle filters
Derivation

Obviously, given samples from the proposal x(i)0:t ∼ q(x0:t), by evalu-
ating the weight W

(i)
0:t = W0:t(x

(i)
0:t) for i = 1, . . . , N and building a

particle approximation

πN (dx0:t) =

N∑
i=1

w
(i)
0:tδx(i)

0:t

(dx0:t).

where

w
(i)
0:t =

W
(i)
0:t∑N

i=1W
(i)
0:t

.

11

Particle filters
Derivation

The path space importance sampler
▶ Sample x

(i)
0:T ∼ q(x0:T) for i = 1, . . . , N .

▶ Compute weights:

W
(i)
0:t =

γ(x0:t, y1:t)

q(x0:t)
.

and normalise

w
(i)
0:t =

W
(i)
0:t∑N

i=1W
(i)
0:t

.

▶ Report

πN
t (dx0:t) =

N∑
i=1

w
(i)
0:tδx(i)

0:t

(dx0:t).

12

Particle filters
Derivation

The path space importance sampler
▶ Sample x

(i)
0:T ∼ q(x0:T) for i = 1, . . . , N .

▶ Compute weights:

W
(i)
0:t =

γ(x0:t, y1:t)

q(x0:t)
.

and normalise

w
(i)
0:t =

W
(i)
0:t∑N

i=1W
(i)
0:t

.

▶ Report

πN
t (dx0:t) =

N∑
i=1

w
(i)
0:tδx(i)

0:t

(dx0:t).

12

Particle filters
Derivation - sequential approach

Let us consider a decomposition of the proposal

q(x0:t) = q(x0)

t∏
k=1

q(xk|x1:k−1).

Note that, based on this, we can build a recursion for the function
W (x0:t) by writing

W0:t(x0:t) =
γ(x0:t, y1:t)

q(x0:t)
,

=
γ(x0:t−1, y1:t−1)

q(x0:t−1)

τ(xt|xt−1)g(yt|xt)
q(xt|x0:t−1)

,

= W0:t−1(x0:t−1)
τ(xt|xt−1)g(yt|xt)

q(xt|x0:t−1)
,

= W0:t−1(x0:t−1)Wt(x0:t). (6)

13

Particle filters
Derivation - sequential approach

This is still not optimal, as we still need to store the whole path.

We can further simplify our proposal by assuming a Markov structure.

q(x0:t) = q(x0)
t∏

k=1

q(xk|xk−1).

This allows us to obtain purely recursive weight computation

W0:t(x0:t) =
γ(x0:t, y1:t)

q(x0:t)
, (7)

=
γ(x0:t−1, y1:t−1)

q(x0:t−1)

τ(xt|xt−1)g(yt|xt)
q(xt|xt−1)

, (8)

= W0:t−1(x0:t−1)
τ(xt|xt−1)g(yt|xt)

q(xt|xt−1)
, (9)

= W0:t−1(x0:t−1)Wt(xt, xt−1), (10)

14

Particle filters
Derivation - sequential approach

This is still not optimal, as we still need to store the whole path.

We can further simplify our proposal by assuming a Markov structure.

q(x0:t) = q(x0)

t∏
k=1

q(xk|xk−1).

This allows us to obtain purely recursive weight computation

W0:t(x0:t) =
γ(x0:t, y1:t)

q(x0:t)
, (7)

=
γ(x0:t−1, y1:t−1)

q(x0:t−1)

τ(xt|xt−1)g(yt|xt)
q(xt|xt−1)

, (8)

= W0:t−1(x0:t−1)
τ(xt|xt−1)g(yt|xt)

q(xt|xt−1)
, (9)

= W0:t−1(x0:t−1)Wt(xt, xt−1), (10)

14

Particle filters
Sequential Importance Sampling (SIS)

▶ Assume that we have computed the unnormalised weights W(i)
0:t−1 =

W (x
(i)
0:t−1) recursively and obtained samples x

(i)
0:t−1.

▶ We only need the last sample x
(i)
t−1 to obtain the weight update

given in (10).

▶ And also note that W
(i)
0:t−1 for i = 1, . . . , N are just numbers,

they do not require the storage of previous samples.

15

Particle filters
Sequential Importance Sampling (SIS)

▶ Assume that we have computed the unnormalised weights W(i)
0:t−1 =

W (x
(i)
0:t−1) recursively and obtained samples x

(i)
0:t−1.

▶ We only need the last sample x
(i)
t−1 to obtain the weight update

given in (10).

▶ And also note that W
(i)
0:t−1 for i = 1, . . . , N are just numbers,

they do not require the storage of previous samples.

15

Particle filters
Sequential Importance Sampling (SIS)

▶ Assume that we have computed the unnormalised weights W(i)
0:t−1 =

W (x
(i)
0:t−1) recursively and obtained samples x

(i)
0:t−1.

▶ We only need the last sample x
(i)
t−1 to obtain the weight update

given in (10).

▶ And also note that W
(i)
0:t−1 for i = 1, . . . , N are just numbers,

they do not require the storage of previous samples.

15

Particle filters
Sequential Importance Sampling (SIS): Implementation

We can now sample from the Markov proposal x(i)t ∼ q(xt|x(i)t−1) and
compute the weights of the path sampler at time t as

W
(i)
1:t = W

(i)
1:t−1 ×W

(i)
t ,

where

W
(i)
t =

τ(x
(i)
t |x(i)t−1)g(yt|x

(i)
t)

q(x
(i)
t |x(i)t−1)

.

16

Particle filters
Sequential Importance Sampling (SIS)

Given the samples x
(i)
t−1, we first perform sampling step

x
(i)
t ∼ q(xt|xt−1)

and then compute

W
(i)
t =

τ(x
(i)
t |x(i)t−1)g(yt|x

(i)
t)

q(x
(i)
t |x(i)t−1)

.

and update

W
(i)
0:t = W

(i)
0:t−1 ×W

(i)
t .

These are unnormalised weights and we normalise them to obtain,

w
(i)
0:t =

W
(i)
0:t∑N

i=1W
(i)
0:t

,

17

Particle filters
Sequential Importance Sampling (SIS)

Given the samples x
(i)
t−1, we first perform sampling step

x
(i)
t ∼ q(xt|xt−1)

and then compute

W
(i)
t =

τ(x
(i)
t |x(i)t−1)g(yt|x

(i)
t)

q(x
(i)
t |x(i)t−1)

.

and update

W
(i)
0:t = W

(i)
0:t−1 ×W

(i)
t .

These are unnormalised weights and we normalise them to obtain,

w
(i)
0:t =

W
(i)
0:t∑N

i=1W
(i)
0:t

,

17

Particle filters
Sequential Importance Sampling (SIS)

Given the samples x
(i)
t−1, we first perform sampling step

x
(i)
t ∼ q(xt|xt−1)

and then compute

W
(i)
t =

τ(x
(i)
t |x(i)t−1)g(yt|x

(i)
t)

q(x
(i)
t |x(i)t−1)

.

and update

W
(i)
0:t = W

(i)
0:t−1 ×W

(i)
t .

These are unnormalised weights and we normalise them to obtain,

w
(i)
0:t =

W
(i)
0:t∑N

i=1W
(i)
0:t

,

17

Particle filters
Sequential Importance Sampling (SIS)

which finally leads to the empirical measure,

πN (dx0:t) =
N∑
i=1

w
(i)
0:tδx(i)

0:t

(dx0:t).

18

Particle filters
Sequential Importance Sampling (SIS)

▶ Sample x
(i)
0 ∼ q(x0) for i = 1, . . . , N .

▶ For t ≥ 1
▶ Sample: x

(i)
t ∼ q(xt|x(i)

t−1),
▶ Compute weights:

W
(i)
t =

τ(x
(i)
t |x(i)

t−1)g(yt|x
(i)
t)

q(x
(i)
t |x(i)

t−1)
.

and update

W
(i)
0:t = W

(i)
0:t−1 ×W

(i)
t .

Normalise weights,

w
(i)
0:t =

W
(i)
0:t∑N

i=1 W
(i)
0:t

.

▶ Report

πN
t (dx0:t) =

N∑
i=1

w
(i)
0:tδx(i)

0:t
(dx0:t).

19

Particle filters
Sequential Importance Sampling (SIS)

There is a well-known problem with this scheme: Weight degeneracy.

Quiz: What is the problem with the weights?

Addition in the log-domain will cause big discrepancies between log-
weights, which will result in degeneracy after normalisation.

To resolve this, the approach is to introduce resampling steps.

20

Particle filters
Sequential Importance Sampling (SIS)

There is a well-known problem with this scheme: Weight degeneracy.

Quiz: What is the problem with the weights?

Addition in the log-domain will cause big discrepancies between log-
weights, which will result in degeneracy after normalisation.

To resolve this, the approach is to introduce resampling steps.

20

Particle filters
Sequential Importance Sampling (SIS)

There is a well-known problem with this scheme: Weight degeneracy.

Quiz: What is the problem with the weights?

Addition in the log-domain will cause big discrepancies between log-
weights, which will result in degeneracy after normalisation.

To resolve this, the approach is to introduce resampling steps.

20

Particle filters
Sequential Importance Sampling (SIS)

There is a well-known problem with this scheme: Weight degeneracy.

Quiz: What is the problem with the weights?

Addition in the log-domain will cause big discrepancies between log-
weights, which will result in degeneracy after normalisation.

To resolve this, the approach is to introduce resampling steps.

20

Particle filters
Sequential Importance Sampling - Resampling (SISR)

▶ Sample x
(i)
0 ∼ q(x0) for i = 1, . . . , N .

▶ For t ≥ 1
▶ Sample: x̄

(i)
t ∼ q(xt|x(i)

t−1),
▶ Compute weights:

W
(i)
t =

τ(x̄
(i)
t |x(i)

t−1)g(yt|x̄
(i)
t)

q(x̄
(i)
t |x(i)

t−1)
.

Normalise: w
(i)
t = W

(i)
t /
∑N

i=1 W
(i)
t

▶ Report

πN
t (dxt) =

N∑
i=1

w
(i)
t δ

x̄
(i)
t
(dxt).

▶ Resample:

x
(i)
t ∼

N∑
i=1

w
(i)
t δ

x̃
(i)
t
(dxt).

21

Particle filters
Sequential Importance Sampling - Resampling (SISR)

SISR (and variants) also approximates the path distributions.

But... When we resample the last particle, we essentially perform
resampling on the path.

Say at time t, we resample

x
(i)
t = x̄

a
(i)
t

t ,

in essence, we are also resampling past paths, so on the path space

x
(i)
0:t = (x̄t

a
(i)
t , x

a
(i)
t

0:t−1).

where a
(i)
t are sampled from a discrete distribution with probabilities

w
(i)
t .

22

Particle filters
Sequential Importance Sampling - Resampling (SISR)

SISR (and variants) also approximates the path distributions.

But... When we resample the last particle, we essentially perform
resampling on the path.

Say at time t, we resample

x
(i)
t = x̄

a
(i)
t

t ,

in essence, we are also resampling past paths, so on the path space

x
(i)
0:t = (x̄t

a
(i)
t , x

a
(i)
t

0:t−1).

where a
(i)
t are sampled from a discrete distribution with probabilities

w
(i)
t .

22

Particle filters
Sequential Importance Sampling - Resampling (SISR)

SISR (and variants) also approximates the path distributions.

But... When we resample the last particle, we essentially perform
resampling on the path.

Say at time t, we resample

x
(i)
t = x̄

a
(i)
t

t ,

in essence, we are also resampling past paths, so on the path space

x
(i)
0:t = (x̄t

a
(i)
t , x

a
(i)
t

0:t−1).

where a
(i)
t are sampled from a discrete distribution with probabilities

w
(i)
t .

22

Particle filters
Bootstrap Particle filter

The bootstrap particle filter (BPF) is the SISR algorithm with the
following choices:

q(xt|xt−1) = τ(xt|xt−1),

23

Particle filters
Bootstrap particle filter

▶ Sample x
(i)
0 ∼ q(x0) for i = 1, . . . , N .

▶ For t ≥ 1
▶ Sample: x̄

(i)
t ∼ τ(xt|x(i)

t−1),
▶ Compute weights:

W
(i)
t = g(yt|x̄(i)

t),

Normalise: w
(i)
t = W

(i)
t /
∑N

i=1 W
(i)
t

▶ Report

πN
t (dxt) =

N∑
i=1

w
(i)
t δ

x̄
(i)
t
(dxt).

▶ Resample:

x
(i)
t ∼

N∑
i=1

w
(i)
t δ

x̄
(i)
t
(dxt).

Quiz: How to estimate expectations of a given function φ(xt)?
24

Particle filters
Bootstrap particle filter: Example I

Consider the following state-space model

x0 ∼ N (x0; 0, I),

xt|xt−1 ∼ N (xt;Axt−1, Q),

yt|xt ∼ N (yt;Hxt, R).

where

A =

1 0 κ 0
0 1 0 κ
0 0 0.99 0
0 0 0 0.99

 and Q =

κ3

3 0 κ2

2 0

0 κ3

3 0 κ2

2
κ2

2 0 κ 0

0 κ2

2 0 κ

and

H =

(
1 0 0 0
0 1 0 0

)
and R = r

(
1 0
0 1

)
,

where r = 5.
25

Particle filters
Bootstrap particle filter: Example I

Particle filter for this model: Given x
(i)
1:t−1 for i = 1, . . . , N ,

▶ Sample: x
(i)
t ∼ N (xt;Ax

(i)
t−1, Q),

▶ Compute weights:

W
(i)
t = N (yt;Hx

(i)
t , R),

Normalise: w
(i)
t = W

(i)
t /
∑N

i=1W
(i)
t

▶ Report

πN
t (dxt) =

N∑
i=1

w
(i)
t δ

x
(i)
t
(dxt).

▶ Resample:

x
(i)
t ∼

N∑
i=1

w
(i)
t δ

x̃
(i)
t
(dxt).

26

Particle filters
Bootstrap particle filter: Example II

Let us look the following Lorenz 63 model

x1,t = x1,t−1 − γs(x1,t − x2,t) +
√
γξ1,t,

x2,t = x2,t−1 + γ(rx1,t − x2,t − x1,tx3,t) +
√
γξ2,t,

x3,t = x3,t−1 + γ(x1,tx2,t − bx3,t) +
√
γξ3,t,

where γ = 0.01, r = 28, b = 8/3, s = 10, and ξ1,t, ξ2,t, ξ3,t ∼
N (0, 1) are independent Gaussian random variables. The observation
model is given by

yt = [1, 0, 0]xt + ηt,

where ηt ∼ N (0, σ2
y) is a Gaussian random variable.

27

Bootstrap particle filter
Marginal likelihoods

Another quantity BPF can estimate is the marginal likelihood:

p(y1:t) =

∫
p(y1:t, x0:t)dx0:t.

This quantity is useful for model selection and model comparison.

28

Bootstrap particle filter
Marginal likelihoods

Recall tbat we bave tbe factorisation:

p(y1:t) =

t∏
k=1

p(yk|y1:k−1).

where

p(yt|y1:t−1) =

∫
g(yt|xt)ξt(xt|y1:t−1)dxt.

Recall that we can obtain the approximation of ξt(xt|y1:t−1) by the
particle filter using predictive particles x̄

(i)
t ∼ τ(xt|x(i)t−1) as

pNt (dxt|y1:t−1) =
1

N

N∑
i=1

δ
x̄
(i)
t
(dxt).

29

Bootstrap particle filter
Marginal likelihoods

Therefore, given

pNt (dxt|y1:t−1) =
1

N

N∑
i=1

δ
x̄
(i)
t
(dxt),

we get

pN (yt|y1:t−1) =
1

N

N∑
i=1

g(yt|x̄(i)t).

As a result, we can approximate

pN (y1:t) =

t∏
k=1

pN (yk|y1:k−1).

30

Bootstrap particle filter
Marginal likelihoods

Remarkably, this estimate is unbiased:

E[pN (y1:t)] = p(y1:t).

31

Bootstrap particle filter
Convergence bounds

For general (bounded) test functions φ(xt) and filtering measures
πN
t (dxt|y1:t), we have the following Lp bound

∥(φ, πN
t)− (φ, πt)∥p ≤

ct,p∥φ∥∞√
N

.

32

We have seen inference for

y1 y2 . . .

x1x0 x2 . . . xt

yt

What if the model has parameters θ?

y1 y2 · · · yk

x1x0 x2 · · · xk

θ

33

We have seen inference for

y1 y2 . . .

x1x0 x2 . . . xt

yt

What if the model has parameters θ?

y1 y2 · · · yk

x1x0 x2 · · · xk

θ

33

We have seen inference for

y1 y2 . . .

x1x0 x2 . . . xt

yt

What if the model has parameters θ?

y1 y2 · · · yk

x1x0 x2 · · · xk

θ

33

Problem definition
Recap – the model, the notation

y1 y2 · · · yk

x1x0 x2 · · · xk

θ

We are given the model

x0 ∼ µθ(x0),

xt|xt−1 ∼ τθ(xt|xt−1),

yt|xt ∼ gθ(yt|xt).

We aim at estimating θ given y1:T .
34

Problem definition
Marginal likelihood maximization

We are interested in solving the global optimization problem

θ⋆ = argmax
θ∈Θ

log pθ(y1:T),

where

pθ(y1:T) =

∫
γθ(x0:T , y1:T)dx0:T .

In this lecture, we are interested in gradient-based approaches for
maximization of log pθ(y1:T).

35

The smoothing problem

For the maximum-likelihood parameter estimation methods, we often
require an approximation of the smoothing distribution πθ(x0:T |y1:T).

Wait... Can’t we obtain it via the joint sampler we described in the
filtering lecture?

Yes, but...

36

The smoothing problem

For the maximum-likelihood parameter estimation methods, we often
require an approximation of the smoothing distribution πθ(x0:T |y1:T).

Wait... Can’t we obtain it via the joint sampler we described in the
filtering lecture?

Yes, but...

36

The smoothing problem

For the maximum-likelihood parameter estimation methods, we often
require an approximation of the smoothing distribution πθ(x0:T |y1:T).

Wait... Can’t we obtain it via the joint sampler we described in the
filtering lecture?

Yes, but...

36

The smoothing problem

Recall how we do it: For t ≥ 2,
▶ Sample:

x̄
(i)
t ∼ qt(xt|x(i)t−1),

▶ Weight

w
(i)
t ∝

τθ(x̄
(i)
t |x(i)t−1)gθ(yt|x̄

(i)
t)

qt(x̄
(i)
t |x(i)t−1)

,

▶ Resample: Choose a
(i)
t where P(a(i)t = j) ∝ wj

t and set

x
(i)
1:t = (x

a
(i)
t

1:t−1, x̄
a
(i)
t

t)

The entire state history is resampled! What can go wrong?

37

The smoothing problem

If we do resampling every step (which is crucial), then we can only
do it if we track the genealogy backwards. (?)
▶ After every resample, we throw away the killed particles’ ances-

tors and replace them with the survivors’ ancestors.
Path degeneracy is a big issue.

Figure: Source: Svensson, Andreas, Thomas B. Schön, and Manon Kok.
"Nonlinear state space smoothing using the conditional particle filter."
(2015).

38

The smoothing problem
An alternative: Forward filtering backward (something)

Instead, we can consider the following decomposition

πθ(x0:T |y1:T) = πθ(xT |y0:T)
T−1∏
k=0

πθ(xk|y0:T , xk+1),

= πθ(xT |y0:T)
T−1∏
k=0

πθ(xk|y0:k, xk+1). (11)

where

πθ(xt|xt+1, y1:t) =
πθ(xt, xt+1|y1:t)
ξθ(xt+1|y1:t)

, (12)

=
τθ(xt+1|xt)πθ(xt|y1:t)

ξθ(xt+1|y1:t)
. (13)

39

The smoothing problem
An alternative: Forward filtering backward sampling

πθ(x0:T |y1:T) = πθ(xT |y0:T)
T−1∏
k=0

πθ(xk|y0:k, xk+1).

This recursion suggests sampling πθ(xT |y1:T) from the filter and
sample backwards from πθ(xk|y0:k, xk+1) by conditioning on the
xk+1. This would provide us a sample x

(i)
0:T from the smoother.

We approximate the backward distribution as

πθ(dxt|xt+1, y1:t) =
τθ(xt+1|xt)πN

θ (dxt|y1:t)
ξNθ (xt+1|y1:t)

.

where πN
θ and ξNθ approximate filtering and predictive measures (see

next slide).
40

The smoothing problem
An alternative: Forward filtering backward sampling

πθ(dxt|xt+1, y1:t) =
τθ(xt+1|xt)πN

θ (dxt|y1:t)∫
τθ(xt+1|xt)πN

θ (dxt|y1:t)

Plugging πN
θ (dxt|y1:t) =

∑N
i=1 w

(i)
t δ

x̄
(i)
t
(dxt) gives

πN
θ (dxt|xt+1, y1:t) =

∑N
i=1 w

(i)
t τθ(xt+1|x̄(i)t)δ

x̄
(i)
t
(dxt)∑N

i=1 w
(i)
t τθ(xt+1|x̄(i)t)

(14)

41

The smoothing problem
An alternative: Forward filtering backward sampling

If we use the weighted approximation then the FFBSa is given by
▶ At time T , sample x̃T ∼ πN

θ (dxT |y1:T),
▶ t from T − 1 to 1:

▶ Compute smoothing weights

w
(i)
t+1|t ∝ w

(i)
t τθ(x̃t+1|x̄(i)

t).

▶ Then sample

x̃t ∼
N∑
i=1

w
(i)
t+1|tδx̄(i)

t
(dxt).

The sample x̃0:T is a sample from the smoother. However, it is just
a single sample!

Do the same N times. Reduces path degeneracy, but O(N2(T+1)).
42

The smoothing problem
Another alternative: Forward filtering backward smoothing

Recall the original smoothing recursions we discussed:

πθ(xt|y1:T) =
∫

πθ(xt, xt+1|y1:T)dxt+1,

=

∫
πθ(xt|xt+1, y1:t)πθ(xt+1|y1:T)dxt+1,

=

∫
τθ(xt+1|xt)πθ(xt|y1:t)

ξθ(xt+1|y1:t)
πθ(xt+1|y1:T)dxt+1.

Can we use these to build a particle approximation? Recall measure
theoretic form

πθ(dxt|y1:T) = πθ(dxt|y1:t)
∫

τθ(xt+1|xt)
ξθ(xt+1|y1:t)

πθ(xt+1|y1:T)dxt+1.

43

The smoothing problem
Another alternative: Forward filtering backward smoothing

Recall the original smoothing recursions we discussed:

πθ(xt|y1:T) =
∫

πθ(xt, xt+1|y1:T)dxt+1,

=

∫
πθ(xt|xt+1, y1:t)πθ(xt+1|y1:T)dxt+1,

=

∫
τθ(xt+1|xt)πθ(xt|y1:t)

ξθ(xt+1|y1:t)
πθ(xt+1|y1:T)dxt+1.

Can we use these to build a particle approximation?

Recall measure
theoretic form

πθ(dxt|y1:T) = πθ(dxt|y1:t)
∫

τθ(xt+1|xt)
ξθ(xt+1|y1:t)

πθ(xt+1|y1:T)dxt+1.

43

The smoothing problem
Another alternative: Forward filtering backward smoothing

Recall the original smoothing recursions we discussed:

πθ(xt|y1:T) =
∫

πθ(xt, xt+1|y1:T)dxt+1,

=

∫
πθ(xt|xt+1, y1:t)πθ(xt+1|y1:T)dxt+1,

=

∫
τθ(xt+1|xt)πθ(xt|y1:t)

ξθ(xt+1|y1:t)
πθ(xt+1|y1:T)dxt+1.

Can we use these to build a particle approximation? Recall measure
theoretic form

πθ(dxt|y1:T) = πθ(dxt|y1:t)
∫

τθ(xt+1|xt)
ξθ(xt+1|y1:t)

πθ(xt+1|y1:T)dxt+1.

43

The smoothing problem
Another alternative: Forward filtering backward smoothing

Backward recursion

πθ(dxt|y1:T) = πθ(dxt|y1:t)
∫

τθ(xt+1|xt)∫
τθ(xt+1|xt)πθ(dxt|y1:t)

πθ(dxt+1|y1:T).

This means that we can use approximations {πN
θ (dxt|y1:t)}Tt=1 again

to recursively update the smoother backwards in time and construct
the smoother update

πθ(dxt+1|y1:T) 7→ πθ(dxt|y1:T).

44

The smoothing problem
Another alternative: Forward filtering backward smoothing

Backward recursion

πθ(dxt|y1:T) = πθ(dxt|y1:t)
∫

τθ(xt+1|xt)∫
τθ(xt+1|xt)πθ(dxt|y1:t)

πθ(dxt+1|y1:T).

This means that we can use approximations {πN
θ (dxt|y1:t)}Tt=1 again

to recursively update the smoother backwards in time and construct
the smoother update

πθ(dxt+1|y1:T) 7→ πθ(dxt|y1:T).

44

The smoothing problem
Another alternative: Forward filtering backward smoothing

Assume we have an approximation

πN
θ (dxt+1|y1:T) =

N∑
i=1

w
(i)
t+1|T δx̄(i)

t+1

(dxt+1).

where w
(i)
T |T = w

(i)
T . We can use the recursion in the previous slide

to obtain

πθ(dxt|y1:T) =
N∑
i=1

w
(i)
t|T δx̄(i)

t
(dxt),

where

w
(i)
t|T = w

(i)
t

N∑
j=1

w
(j)
t+1|T τθ(x̄

(j)
t+1|x̄

(i)
t)∑N

l=1 w
(l)
t τθ(x̄

(j)
t+1|x̄

(l)
t)

45

The parameter estimation problem
Marginal likelihood maximization

Recall we are interested in solving the global optimization problem

θ⋆ = argmax
θ∈Θ

log pθ(y1:T),

where

pθ(y1:T) =

∫
γθ(x0:T , y1:T)dx0:T .

46

The parameter estimation problem
Marginal likelihood maximization

A generic way to do this would be to run

θi+1 = θi + γ∇ log pθ(y1:T).

▶ Well understood gradient scheme,
▶ Can be also replaced by an adaptive gradient scheme. (Adam,

your favourite one...)
However, the gradient is not computable...

47

How to compute the gradient?

For this maximization, we will be interested in computing

∇θ log pθ(y1:T).

For this, we use Fisher’s identity.

48

How to compute the gradient?

Proposition 1 (Fisher’s identity)

Under appropriate regularity conditions, we have

∇θ log pθ(y1:T) =

∫
∇θ log γθ(x0:T , y1:T)pθ(x0:T |y1:T)dx0:T .

49

How to compute the gradient?

Proof.
Let us note that

∇θ log pθ(y1:T) =
∇θpθ(y1:T)

pθ(y1:T)
,

=
∇
∫
γθ(x0:T , y1:T)dx0:T

pθ(y1:T)
,

=

∫
∇γθ(x0:T , y1:T)

pθ(y1:T)
dx0:T ,

=

∫
∇ log γθ(x0:T , y1:T)γθ(x0:T , y1:T)

pθ(y1:T)
dx0:T ,

=

∫
∇ log γθ(x0:T , y1:T)πθ(x0:T |y1:T)dx0:T .

■

50

How to compute the gradient?

Given Fisher’s identity,

∇θ log γθ(y1:T) =

∫
∇θ log γθ(x0:T , y1:T)πθ(x0:T |y1:T)dx0:T .

and

log pθ(x0:T , y1:T) = logµθ(x0) +

T∑
t=1

log τθ(xt|xt−1) +

T∑
t=1

log gθ(yt|xt),

51

How to compute the gradient?

Given

log pθ(x0:T , y1:T) = logµθ(x0) +

T∑
t=1

log τθ(xt|xt−1) +

T∑
t=1

log gθ(yt|xt),

Some shortcut notation:

sθ1(x−1, x0) = sθ0(x0) = ∇ logµθ(x0),

sθ,t(xt−1, xt) = ∇ log gθ(yt|xt) +∇ log τθ(xt|xt−1).

52

How to compute the gradient?

So finally the gradient can be written as an expectation

∇θ log pθ(y1:T) =

∫
∇θ log pθ(x0:T , y1:T)pθ(x0:T |y1:T)dx0:T .

We identify the marginal likelihood as an additive functional

∇θ log pθ(y1:T) = Sθ
T (x1:T),

=

∫
XT+1

(
T∑
t=1

sθt (xt−1, xt)

)
πθ(x0:T |y1:T)dx0:T .

53

How to compute the gradient?

But how do we compute? Recall

sθt (xt−1, xt) = ∇ log gθ(yt|xt) +∇ log τθ(xt|xt−1).

The BPF with parameter gradient computation. Fix θ and assume
{X(i)

1:t−1, α
(i)
t−1} are given.

▶ Sample: x̄
(i)
t ∼ τθ(xt|x

(i)
t−1).

▶ Weight w(i)
t ∝ g(yt|x̄(i)t).

▶ Resample:

x
(i)
t ∼

N∑
i=1

w
(i)
t δ

x̄
(i)
t
(dxt),

i.e. x
(i)
t = x̄

a
(i)
t

t with P(a(i)t = j) = wj
t and construct the

estimate

α
(i)
t = α

a
(i)
t

t−1 + sθt (x
a
(i)
t

t−1, x
(i)
t)

54

How to compute the gradient?

Then

Sθ,N
T =

1

N

N∑
i=1

α
(i)
T

However, as this naive “forward smoother” O(N) iteration complex-
ity) suffers from path degeneracy as we discussed before, therefore
the estimates will not be reliable.

Use FFBS described before however the computation won’t be recur-
sive (it is offline) and O(N2) complexity - but has better properties.

55

How to compute the gradient?

There is a method called forward smoothing, which can build the
smoothed additive functional expectations online. Let us go back
and write, for n < T ,

∇θ log pθ(y1:n) = Sθ
T (x1:n),

=

∫
Xn+1

(
n∑

t=1

sθt (xt−1, xt)

)
πθ(x0:n|y1:n)dx0:n,

=

∫
V θ
n (xn)πθ(xn|y1:n)dxn.

where

V θ
n (xn) =

∫ (n∑
k=1

sk(xk−1, xk)

)
pθ(x0:n−1|y0:n−1, xn)dx0:n−1.

56

How to compute the gradient?

The key recursion, note that

V θ
n+1(xn+1) =

∫ (n+1∑
k=1

sk(xk−1, xk)

)
pθ(x0:n|y0:n, xn+1)dx0:n,

=

∫ (n∑
k=1

sk(xk−1, xk) + sn(xn−1, xn)

)
pθ(x0:n−1|y0:n−1, xn)dx0:n−1pθ(xn|y0:n, xn+1)dxn,

=

∫ (
V θ
n (xn) + sn(xn−1, xn)

)
pθ(xn|y0:n, xn+1)dxn.

We have a recursion for (V θ
n)n≥1 that can be estimated online using

(x
(i)
t , x

(i)
t+1).

57

How to compute the gradient?

How do compute things only forward pass? Recall FFBS
▶ At time T , sample x̃T ∼ πN

θ (dxT |y1:T),
▶ t from T − 1 to 1:

▶ Compute smoothing weights

w
(i)
t+1|t ∝ w

(i)
t τθ(x̃t+1|x̄(i)

t).

▶ Then sample

x̃t ∼
N∑
i=1

w
(i)
t+1|tδx̄(i)

t
(dxt).

58

How to compute the gradient?

Forward only smoothing: Assume we have a good approximation of
V θ
t (x

(i)
t).

▶ Sample x̄
(i)
t+1 ∼ f(·|x(i)t),

▶ Use it to compute FFBS smoothing weights (with predictive
particles)

w
(i)
t+1|t ∝ w

(i)
t τθ(x̄

(i)
t+1|x

(i)
t).

and

V θ
t+1(x̄

(i)
t+1) =

N∑
j=1

w
(i)
t+1|t

(
V θ
t (x

(i)
t) + st+1(x

(i)
t , x

(i)
t+1)

)
.

and build

Sθ,N
t+1 =

N∑
j=1

w
(i)
t+1V

θ
t (x

(i)
t+1).

Forward smoothing.

59

How to compute the gradient?

Forward only smoothing: Assume we have a good approximation of
V θ
t (x

(i)
t).

▶ Sample x̄
(i)
t+1 ∼ f(·|x(i)t),

▶ Use it to compute FFBS smoothing weights (with predictive
particles)

w
(i)
t+1|t ∝ w

(i)
t τθ(x̄

(i)
t+1|x

(i)
t).

and

V θ
t+1(x̄

(i)
t+1) =

N∑
j=1

w
(i)
t+1|t

(
V θ
t (x

(i)
t) + st+1(x

(i)
t , x

(i)
t+1)

)
.

and build

Sθ,N
t+1 =

N∑
j=1

w
(i)
t+1V

θ
t (x

(i)
t+1).

Forward smoothing.
59

Is there a faster way? Online gradient descent

An approximation

θt+1 = θt + γ∇ log pθ0:t(yt|y1:t−1)

where

∇ log pθ0:t(yt|y1:t−1) = ∇pθ0:t(y1:t)−∇pθ0:t−1(y1:t−1).

The definition

∇pθ0:t(y1:t) = πθ,t

(
t∑

k=1

sθkk (xt−1, xt)

)
,

therefore

∇ log pθ0:t(yt|y1:t−1) = E
[
sθtt (xt−1, xt)

]
60

References I

61

	Background
	A brief summary of particle smoothing
	Parameter estimation problem in SSMs

