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State-space models
problem definition

y1 y2 . . .

x1x0 x2 . . . xt

yt

The conditional independence structure of a state-space model.

(xt)t∈N+ : hidden signal process, (yt)t∈N+ the observation process.

x0 ∼ π0(dx0), (prior distribution)
xt|xt−1 ∼ τt(dxt|xt−1), (transition model)

yt|xt ∼ gt(yt|xt), (likelihood)

xt ∈ X where X is the state-space. We use: gt(xt) = gt(yt|xt).
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State-space models
Algorithmic principle

We are interested in estimating expectations,

(φ, πt) =

∫
φ(xt)πt(xt|y1:t)dxt =

∫
φ(xt)πt(dxt),

sequentially as new data arrives.

y1 y2 . . .

x1x0 x2 . . . xt

yt

Algorithm:
Predict

ξt(dxt) =

∫
πt−1(dxt−1)τt(dxt|xt−1)

Update

πt(dxt) = ξt(dxt)
gt(yt|xt)

p(yt|y1:t−1)
.
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Particle filters

Before we go into the details of the derivation, let us directly look at
the algorithm.

A general algorithm to estimate expectations of any
test function φ(xt) given y1:t.
▶ Sampling: draw

x̄
(i)
t ∼ τt(dxt|x(i)t−1)

independently for every i = 1, . . . , N .
▶ Weighting: compute

w
(i)
t = gt(x̄

(i)
t )/Z̄N

t

for every i = 1, . . . , N , where Z̄N
t =

∑N
i=1 gt(x̄

(i)
t ).

▶ Resampling: draw independently,

x
(i)
t ∼ π̃t(dx) :=

∑
i

w
(i)
t δ

x̄
(i)
t
(dx) for i = 1, ..., N.

πN
t−1 →︸︷︷︸

sampling

ξNt →︸︷︷︸
weighting

π̃N
t →︸︷︷︸

resampling

πN
t .
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Particle filters
Derivation

The key recursion on the path distributions.

πt(x0:t|y1:t) =
γ(x0:t, y1:t)

p(y1:t)

=
γ(x0:t−1, y1:t−1)

p(y1:t−1)

τ(xt|xt−1)g(yt|xt)
p(yt|y1:t−1)

= πt(x0:t−1|y1:t−1)
τ(xt|xt−1)g(yt|xt)

p(yt|y1:t−1)
.
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Particle filters
Derivation

Recall importance sampling: Assume that we aim at estimating ex-
pectations of a given density π, i.e., we would like to compute

(φ, π) =

∫
φ(x)π(x)dx.

We also assume that sampling from this density is not possible and
we can only evaluate the unnormalised density γ(x).
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Particle filters
Derivation

One way to estimate this expectation is to sample from a proposal
measure q and rewrite the integral as

(φ, π) =

∫
φ(x)π(x)dx,

=

∫
φ(x)γ(x)q(x) q(x)dx∫ γ(x)

q(x) q(x)dx
,

≈
1
N

∑N
i=1 φ(x

(i))γ(x
(i))

q(x(i))

1
N

∑N
i=1

γ(x(i))

q(x(i))

, x(i) ∼ q, i = 1, . . . , N.

(1)
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Particle filters
Derivation

Let us now introduce the unnormalised weight function

W (x) =
γ(x)

q(x)
. (2)

With this, the Eq. (1) becomes

(φ, πN ) =
1
N

∑N
i=1 φ(x

(i))W (x(i))
1
N

∑N
i=1W (x(i))

, x(i) ∼ q, i = 1, . . . , N,

=

∑N
i=1 φ(x

(i))W(i)∑N
i=1W

(i)
, x(i) ∼ q, i = 1, . . . , N,

where W(i) = W (x(i)) are called the unnormalised weights.
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Particle filters
Derivation

Finally, we can obtain the estimator in a more convenient form,

(φ, πN ) =

N∑
i=1

w(i)φ(x(i)).

by introducing the normalised importance weights

w(i) =
W(i)∑N
i=1W

(i)
, (3)

for i = 1, . . . , N . We note that the particle approximation of π in
this case is given as

πN (dx) =

N∑
i=1

w(i)δx(i)(dx). (4)

In the following, we will derive the importance sampler aiming at
building particle approximations of πt(x0:t|y1:t) for a state-space
model.
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Particle filters
Derivation

The proposal over the entire path space x0:t denoted q(x0:t). Note

γ(x0:t, y1:t) = µ(x0)

t∏
k=1

τ(xk|xk−1)g(yk|xk). (5)

This simply the joint distribution of all variables (x0:t, y1:t). Just as
in the regular importance sampling

W0:t(x0:t) =
γ(x0:t, y1:t)

q(x0:t)
.
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Particle filters
Derivation

Obviously, given samples from the proposal x(i)0:t ∼ q(x0:t), by evalu-
ating the weight W

(i)
0:t = W0:t(x

(i)
0:t) for i = 1, . . . , N and building a

particle approximation

πN (dx0:t) =

N∑
i=1

w
(i)
0:tδx(i)

0:t

(dx0:t).

where

w
(i)
0:t =

W
(i)
0:t∑N

i=1W
(i)
0:t

.
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Particle filters
Derivation

The path space importance sampler
▶ Sample x

(i)
0:T ∼ q(x0:T ) for i = 1, . . . , N .

▶ Compute weights:

W
(i)
0:t =

γ(x0:t, y1:t)

q(x0:t)
.

and normalise

w
(i)
0:t =

W
(i)
0:t∑N

i=1W
(i)
0:t

.

▶ Report

πN
t (dx0:t) =

N∑
i=1

w
(i)
0:tδx(i)

0:t

(dx0:t).
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Particle filters
Derivation
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Particle filters
Derivation - sequential approach

Let us consider a decomposition of the proposal

q(x0:t) = q(x0)

t∏
k=1

q(xk|x1:k−1).

Note that, based on this, we can build a recursion for the function
W (x0:t) by writing

W0:t(x0:t) =
γ(x0:t, y1:t)

q(x0:t)
,

=
γ(x0:t−1, y1:t−1)

q(x0:t−1)

τ(xt|xt−1)g(yt|xt)
q(xt|x0:t−1)

,

= W0:t−1(x0:t−1)
τ(xt|xt−1)g(yt|xt)

q(xt|x0:t−1)
,

= W0:t−1(x0:t−1)Wt(x0:t). (6)
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Particle filters
Derivation - sequential approach

This is still not optimal, as we still need to store the whole path.

We can further simplify our proposal by assuming a Markov structure.

q(x0:t) = q(x0)
t∏

k=1

q(xk|xk−1).

This allows us to obtain purely recursive weight computation

W0:t(x0:t) =
γ(x0:t, y1:t)

q(x0:t)
, (7)

=
γ(x0:t−1, y1:t−1)

q(x0:t−1)

τ(xt|xt−1)g(yt|xt)
q(xt|xt−1)

, (8)

= W0:t−1(x0:t−1)
τ(xt|xt−1)g(yt|xt)

q(xt|xt−1)
, (9)

= W0:t−1(x0:t−1)Wt(xt, xt−1), (10)
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Particle filters
Sequential Importance Sampling (SIS)

▶ Assume that we have computed the unnormalised weights W(i)
0:t−1 =

W (x
(i)
0:t−1) recursively and obtained samples x

(i)
0:t−1.

▶ We only need the last sample x
(i)
t−1 to obtain the weight update

given in (10).

▶ And also note that W
(i)
0:t−1 for i = 1, . . . , N are just numbers,

they do not require the storage of previous samples.
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Particle filters
Sequential Importance Sampling (SIS): Implementation

We can now sample from the Markov proposal x(i)t ∼ q(xt|x(i)t−1) and
compute the weights of the path sampler at time t as

W
(i)
1:t = W

(i)
1:t−1 ×W

(i)
t ,

where

W
(i)
t =

τ(x
(i)
t |x(i)t−1)g(yt|x

(i)
t )

q(x
(i)
t |x(i)t−1)

.
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Particle filters
Sequential Importance Sampling (SIS)

Given the samples x
(i)
t−1, we first perform sampling step

x
(i)
t ∼ q(xt|xt−1)

and then compute

W
(i)
t =

τ(x
(i)
t |x(i)t−1)g(yt|x

(i)
t )

q(x
(i)
t |x(i)t−1)

.

and update

W
(i)
0:t = W

(i)
0:t−1 ×W

(i)
t .

These are unnormalised weights and we normalise them to obtain,

w
(i)
0:t =

W
(i)
0:t∑N

i=1W
(i)
0:t

,
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Particle filters
Sequential Importance Sampling (SIS)

which finally leads to the empirical measure,

πN (dx0:t) =
N∑
i=1

w
(i)
0:tδx(i)

0:t

(dx0:t).
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Particle filters
Sequential Importance Sampling (SIS)

▶ Sample x
(i)
0 ∼ q(x0) for i = 1, . . . , N .

▶ For t ≥ 1
▶ Sample: x

(i)
t ∼ q(xt|x(i)

t−1),
▶ Compute weights:

W
(i)
t =

τ(x
(i)
t |x(i)

t−1)g(yt|x
(i)
t )

q(x
(i)
t |x(i)

t−1)
.

and update

W
(i)
0:t = W

(i)
0:t−1 ×W

(i)
t .

Normalise weights,

w
(i)
0:t =

W
(i)
0:t∑N

i=1 W
(i)
0:t

.

▶ Report

πN
t (dx0:t) =

N∑
i=1

w
(i)
0:tδx(i)

0:t
(dx0:t).
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Particle filters
Sequential Importance Sampling (SIS)

There is a well-known problem with this scheme: Weight degeneracy.

Quiz: What is the problem with the weights?

Addition in the log-domain will cause big discrepancies between log-
weights, which will result in degeneracy after normalisation.

To resolve this, the approach is to introduce resampling steps.

20
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Particle filters
Sequential Importance Sampling - Resampling (SISR)

▶ Sample x
(i)
0 ∼ q(x0) for i = 1, . . . , N .

▶ For t ≥ 1
▶ Sample: x̄

(i)
t ∼ q(xt|x(i)

t−1),
▶ Compute weights:

W
(i)
t =

τ(x̄
(i)
t |x(i)

t−1)g(yt|x̄
(i)
t )

q(x̄
(i)
t |x(i)

t−1)
.

Normalise: w
(i)
t = W

(i)
t /
∑N

i=1 W
(i)
t

▶ Report

πN
t (dxt) =

N∑
i=1

w
(i)
t δ

x̄
(i)
t
(dxt).

▶ Resample:

x
(i)
t ∼

N∑
i=1

w
(i)
t δ

x̃
(i)
t
(dxt).
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Particle filters
Sequential Importance Sampling - Resampling (SISR)

SISR (and variants) also approximates the path distributions.

But... When we resample the last particle, we essentially perform
resampling on the path.

Say at time t, we resample

x
(i)
t = x̄

a
(i)
t

t ,

in essence, we are also resampling past paths, so on the path space

x
(i)
0:t = (x̄t

a
(i)
t , x

a
(i)
t

0:t−1).

where a
(i)
t are sampled from a discrete distribution with probabilities

w
(i)
t .
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Particle filters
Bootstrap Particle filter

The bootstrap particle filter (BPF) is the SISR algorithm with the
following choices:

q(xt|xt−1) = τ(xt|xt−1),

23



Particle filters
Bootstrap particle filter

▶ Sample x
(i)
0 ∼ q(x0) for i = 1, . . . , N .

▶ For t ≥ 1
▶ Sample: x̄

(i)
t ∼ τ(xt|x(i)

t−1),
▶ Compute weights:

W
(i)
t = g(yt|x̄(i)

t ),

Normalise: w
(i)
t = W

(i)
t /
∑N

i=1 W
(i)
t

▶ Report

πN
t (dxt) =

N∑
i=1

w
(i)
t δ

x̄
(i)
t
(dxt).

▶ Resample:

x
(i)
t ∼

N∑
i=1

w
(i)
t δ

x̄
(i)
t
(dxt).

Quiz: How to estimate expectations of a given function φ(xt)?
24



Particle filters
Bootstrap particle filter: Example I

Consider the following state-space model

x0 ∼ N (x0; 0, I),

xt|xt−1 ∼ N (xt;Axt−1, Q),

yt|xt ∼ N (yt;Hxt, R).

where

A =


1 0 κ 0
0 1 0 κ
0 0 0.99 0
0 0 0 0.99

 and Q =


κ3

3 0 κ2

2 0

0 κ3

3 0 κ2

2
κ2

2 0 κ 0

0 κ2

2 0 κ


and

H =

(
1 0 0 0
0 1 0 0

)
and R = r

(
1 0
0 1

)
,

where r = 5.
25



Particle filters
Bootstrap particle filter: Example I

Particle filter for this model: Given x
(i)
1:t−1 for i = 1, . . . , N ,

▶ Sample: x
(i)
t ∼ N (xt;Ax

(i)
t−1, Q),

▶ Compute weights:

W
(i)
t = N (yt;Hx

(i)
t , R),

Normalise: w
(i)
t = W

(i)
t /
∑N

i=1W
(i)
t

▶ Report

πN
t (dxt) =

N∑
i=1

w
(i)
t δ

x
(i)
t
(dxt).

▶ Resample:

x
(i)
t ∼

N∑
i=1

w
(i)
t δ

x̃
(i)
t
(dxt).
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Particle filters
Bootstrap particle filter: Example II

Let us look the following Lorenz 63 model

x1,t = x1,t−1 − γs(x1,t − x2,t) +
√
γξ1,t,

x2,t = x2,t−1 + γ(rx1,t − x2,t − x1,tx3,t) +
√
γξ2,t,

x3,t = x3,t−1 + γ(x1,tx2,t − bx3,t) +
√
γξ3,t,

where γ = 0.01, r = 28, b = 8/3, s = 10, and ξ1,t, ξ2,t, ξ3,t ∼
N (0, 1) are independent Gaussian random variables. The observation
model is given by

yt = [1, 0, 0]xt + ηt,

where ηt ∼ N (0, σ2
y) is a Gaussian random variable.
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Bootstrap particle filter
Marginal likelihoods

Another quantity BPF can estimate is the marginal likelihood:

p(y1:t) =

∫
p(y1:t, x0:t)dx0:t.

This quantity is useful for model selection and model comparison.

28



Bootstrap particle filter
Marginal likelihoods

Recall tbat we bave tbe factorisation:

p(y1:t) =

t∏
k=1

p(yk|y1:k−1).

where

p(yt|y1:t−1) =

∫
g(yt|xt)ξt(xt|y1:t−1)dxt.

Recall that we can obtain the approximation of ξt(xt|y1:t−1) by the
particle filter using predictive particles x̄

(i)
t ∼ τ(xt|x(i)t−1) as

pNt (dxt|y1:t−1) =
1

N

N∑
i=1

δ
x̄
(i)
t
(dxt).

29



Bootstrap particle filter
Marginal likelihoods

Therefore, given

pNt (dxt|y1:t−1) =
1

N

N∑
i=1

δ
x̄
(i)
t
(dxt),

we get

pN (yt|y1:t−1) =
1

N

N∑
i=1

g(yt|x̄(i)t ).

As a result, we can approximate

pN (y1:t) =

t∏
k=1

pN (yk|y1:k−1).

30



Bootstrap particle filter
Marginal likelihoods

Remarkably, this estimate is unbiased:

E[pN (y1:t)] = p(y1:t).
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Bootstrap particle filter
Convergence bounds

For general (bounded) test functions φ(xt) and filtering measures
πN
t (dxt|y1:t), we have the following Lp bound

∥(φ, πN
t )− (φ, πt)∥p ≤

ct,p∥φ∥∞√
N

.
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We have seen inference for

y1 y2 . . .

x1x0 x2 . . . xt

yt

What if the model has parameters θ?

y1 y2 · · · yk

x1x0 x2 · · · xk

θ
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Problem definition
Recap – the model, the notation

y1 y2 · · · yk

x1x0 x2 · · · xk

θ

We are given the model

x0 ∼ µθ(x0),

xt|xt−1 ∼ τθ(xt|xt−1),

yt|xt ∼ gθ(yt|xt).

We aim at estimating θ given y1:T .
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Problem definition
Marginal likelihood maximization

We are interested in solving the global optimization problem

θ⋆ = argmax
θ∈Θ

log pθ(y1:T ),

where

pθ(y1:T ) =

∫
γθ(x0:T , y1:T )dx0:T .

In this lecture, we are interested in gradient-based approaches for
maximization of log pθ(y1:T ).
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The smoothing problem

For the maximum-likelihood parameter estimation methods, we often
require an approximation of the smoothing distribution πθ(x0:T |y1:T ).

Wait... Can’t we obtain it via the joint sampler we described in the
filtering lecture?

Yes, but...
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The smoothing problem

Recall how we do it: For t ≥ 2,
▶ Sample:

x̄
(i)
t ∼ qt(xt|x(i)t−1),

▶ Weight

w
(i)
t ∝

τθ(x̄
(i)
t |x(i)t−1)gθ(yt|x̄

(i)
t )

qt(x̄
(i)
t |x(i)t−1)

,

▶ Resample: Choose a
(i)
t where P(a(i)t = j) ∝ wj

t and set

x
(i)
1:t = (x

a
(i)
t

1:t−1, x̄
a
(i)
t

t )

The entire state history is resampled! What can go wrong?
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The smoothing problem

If we do resampling every step (which is crucial), then we can only
do it if we track the genealogy backwards. (?)
▶ After every resample, we throw away the killed particles’ ances-

tors and replace them with the survivors’ ancestors.
Path degeneracy is a big issue.

Figure: Source: Svensson, Andreas, Thomas B. Schön, and Manon Kok.
"Nonlinear state space smoothing using the conditional particle filter."
(2015).
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The smoothing problem
An alternative: Forward filtering backward (something)

Instead, we can consider the following decomposition

πθ(x0:T |y1:T ) = πθ(xT |y0:T )
T−1∏
k=0

πθ(xk|y0:T , xk+1),

= πθ(xT |y0:T )
T−1∏
k=0

πθ(xk|y0:k, xk+1). (11)

where

πθ(xt|xt+1, y1:t) =
πθ(xt, xt+1|y1:t)
ξθ(xt+1|y1:t)

, (12)

=
τθ(xt+1|xt)πθ(xt|y1:t)

ξθ(xt+1|y1:t)
. (13)
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The smoothing problem
An alternative: Forward filtering backward sampling

πθ(x0:T |y1:T ) = πθ(xT |y0:T )
T−1∏
k=0

πθ(xk|y0:k, xk+1).

This recursion suggests sampling πθ(xT |y1:T ) from the filter and
sample backwards from πθ(xk|y0:k, xk+1) by conditioning on the
xk+1. This would provide us a sample x

(i)
0:T from the smoother.

We approximate the backward distribution as

πθ(dxt|xt+1, y1:t) =
τθ(xt+1|xt)πN

θ (dxt|y1:t)
ξNθ (xt+1|y1:t)

.

where πN
θ and ξNθ approximate filtering and predictive measures (see

next slide).
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The smoothing problem
An alternative: Forward filtering backward sampling

πθ(dxt|xt+1, y1:t) =
τθ(xt+1|xt)πN

θ (dxt|y1:t)∫
τθ(xt+1|xt)πN

θ (dxt|y1:t)

Plugging πN
θ (dxt|y1:t) =

∑N
i=1 w

(i)
t δ

x̄
(i)
t
(dxt) gives

πN
θ (dxt|xt+1, y1:t) =

∑N
i=1 w

(i)
t τθ(xt+1|x̄(i)t )δ

x̄
(i)
t
(dxt)∑N

i=1 w
(i)
t τθ(xt+1|x̄(i)t )

(14)
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The smoothing problem
An alternative: Forward filtering backward sampling

If we use the weighted approximation then the FFBSa is given by
▶ At time T , sample x̃T ∼ πN

θ (dxT |y1:T ),
▶ t from T − 1 to 1:

▶ Compute smoothing weights

w
(i)
t+1|t ∝ w

(i)
t τθ(x̃t+1|x̄(i)

t ).

▶ Then sample

x̃t ∼
N∑
i=1

w
(i)
t+1|tδx̄(i)

t
(dxt).

The sample x̃0:T is a sample from the smoother. However, it is just
a single sample!

Do the same N times. Reduces path degeneracy, but O(N2(T+1)).
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The smoothing problem
Another alternative: Forward filtering backward smoothing

Recall the original smoothing recursions we discussed:

πθ(xt|y1:T ) =
∫

πθ(xt, xt+1|y1:T )dxt+1,

=

∫
πθ(xt|xt+1, y1:t)πθ(xt+1|y1:T )dxt+1,

=

∫
τθ(xt+1|xt)πθ(xt|y1:t)

ξθ(xt+1|y1:t)
πθ(xt+1|y1:T )dxt+1.

Can we use these to build a particle approximation? Recall measure
theoretic form

πθ(dxt|y1:T ) = πθ(dxt|y1:t)
∫

τθ(xt+1|xt)
ξθ(xt+1|y1:t)

πθ(xt+1|y1:T )dxt+1.
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The smoothing problem
Another alternative: Forward filtering backward smoothing

Backward recursion

πθ(dxt|y1:T ) = πθ(dxt|y1:t)
∫

τθ(xt+1|xt)∫
τθ(xt+1|xt)πθ(dxt|y1:t)

πθ(dxt+1|y1:T ).

This means that we can use approximations {πN
θ (dxt|y1:t)}Tt=1 again

to recursively update the smoother backwards in time and construct
the smoother update

πθ(dxt+1|y1:T ) 7→ πθ(dxt|y1:T ).
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The smoothing problem
Another alternative: Forward filtering backward smoothing

Backward recursion
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The smoothing problem
Another alternative: Forward filtering backward smoothing

Assume we have an approximation

πN
θ (dxt+1|y1:T ) =

N∑
i=1

w
(i)
t+1|T δx̄(i)

t+1

(dxt+1).

where w
(i)
T |T = w

(i)
T . We can use the recursion in the previous slide

to obtain

πθ(dxt|y1:T ) =
N∑
i=1

w
(i)
t|T δx̄(i)

t
(dxt),

where

w
(i)
t|T = w

(i)
t

N∑
j=1

w
(j)
t+1|T τθ(x̄

(j)
t+1|x̄

(i)
t )∑N

l=1 w
(l)
t τθ(x̄

(j)
t+1|x̄

(l)
t )
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The parameter estimation problem
Marginal likelihood maximization

Recall we are interested in solving the global optimization problem

θ⋆ = argmax
θ∈Θ

log pθ(y1:T ),

where

pθ(y1:T ) =

∫
γθ(x0:T , y1:T )dx0:T .
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The parameter estimation problem
Marginal likelihood maximization

A generic way to do this would be to run

θi+1 = θi + γ∇ log pθ(y1:T ).

▶ Well understood gradient scheme,
▶ Can be also replaced by an adaptive gradient scheme. (Adam,

your favourite one...)
However, the gradient is not computable...
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How to compute the gradient?

For this maximization, we will be interested in computing

∇θ log pθ(y1:T ).

For this, we use Fisher’s identity.
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How to compute the gradient?

Proposition 1 (Fisher’s identity)

Under appropriate regularity conditions, we have

∇θ log pθ(y1:T ) =

∫
∇θ log γθ(x0:T , y1:T )pθ(x0:T |y1:T )dx0:T .
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How to compute the gradient?

Proof.
Let us note that

∇θ log pθ(y1:T ) =
∇θpθ(y1:T )

pθ(y1:T )
,

=
∇
∫
γθ(x0:T , y1:T )dx0:T

pθ(y1:T )
,

=

∫
∇γθ(x0:T , y1:T )

pθ(y1:T )
dx0:T ,

=

∫
∇ log γθ(x0:T , y1:T )γθ(x0:T , y1:T )

pθ(y1:T )
dx0:T ,

=

∫
∇ log γθ(x0:T , y1:T )πθ(x0:T |y1:T )dx0:T .

■

50



How to compute the gradient?

Given Fisher’s identity,

∇θ log γθ(y1:T ) =

∫
∇θ log γθ(x0:T , y1:T )πθ(x0:T |y1:T )dx0:T .

and

log pθ(x0:T , y1:T ) = logµθ(x0) +

T∑
t=1

log τθ(xt|xt−1) +

T∑
t=1

log gθ(yt|xt),
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How to compute the gradient?

Given

log pθ(x0:T , y1:T ) = logµθ(x0) +

T∑
t=1

log τθ(xt|xt−1) +

T∑
t=1

log gθ(yt|xt),

Some shortcut notation:

sθ1(x−1, x0) = sθ0(x0) = ∇ logµθ(x0),

sθ,t(xt−1, xt) = ∇ log gθ(yt|xt) +∇ log τθ(xt|xt−1).
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How to compute the gradient?

So finally the gradient can be written as an expectation

∇θ log pθ(y1:T ) =

∫
∇θ log pθ(x0:T , y1:T )pθ(x0:T |y1:T )dx0:T .

We identify the marginal likelihood as an additive functional

∇θ log pθ(y1:T ) = Sθ
T (x1:T ),

=

∫
XT+1

(
T∑
t=1

sθt (xt−1, xt)

)
πθ(x0:T |y1:T )dx0:T .
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How to compute the gradient?

But how do we compute? Recall

sθt (xt−1, xt) = ∇ log gθ(yt|xt) +∇ log τθ(xt|xt−1).

The BPF with parameter gradient computation. Fix θ and assume
{X(i)

1:t−1, α
(i)
t−1} are given.

▶ Sample: x̄
(i)
t ∼ τθ(xt|x

(i)
t−1).

▶ Weight w(i)
t ∝ g(yt|x̄(i)t ).

▶ Resample:

x
(i)
t ∼

N∑
i=1

w
(i)
t δ

x̄
(i)
t
(dxt),

i.e. x
(i)
t = x̄

a
(i)
t

t with P(a(i)t = j) = wj
t and construct the

estimate

α
(i)
t = α

a
(i)
t

t−1 + sθt (x
a
(i)
t

t−1, x
(i)
t )
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How to compute the gradient?

Then

Sθ,N
T =

1

N

N∑
i=1

α
(i)
T

However, as this naive “forward smoother” O(N) iteration complex-
ity) suffers from path degeneracy as we discussed before, therefore
the estimates will not be reliable.

Use FFBS described before however the computation won’t be recur-
sive (it is offline) and O(N2) complexity - but has better properties.
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How to compute the gradient?

There is a method called forward smoothing, which can build the
smoothed additive functional expectations online. Let us go back
and write, for n < T ,

∇θ log pθ(y1:n) = Sθ
T (x1:n),

=

∫
Xn+1

(
n∑

t=1

sθt (xt−1, xt)

)
πθ(x0:n|y1:n)dx0:n,

=

∫
V θ
n (xn)πθ(xn|y1:n)dxn.

where

V θ
n (xn) =

∫ ( n∑
k=1

sk(xk−1, xk)

)
pθ(x0:n−1|y0:n−1, xn)dx0:n−1.
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How to compute the gradient?

The key recursion, note that

V θ
n+1(xn+1) =

∫ (n+1∑
k=1

sk(xk−1, xk)

)
pθ(x0:n|y0:n, xn+1)dx0:n,

=

∫ ( n∑
k=1

sk(xk−1, xk) + sn(xn−1, xn)

)
pθ(x0:n−1|y0:n−1, xn)dx0:n−1pθ(xn|y0:n, xn+1)dxn,

=

∫ (
V θ
n (xn) + sn(xn−1, xn)

)
pθ(xn|y0:n, xn+1)dxn.

We have a recursion for (V θ
n )n≥1 that can be estimated online using

(x
(i)
t , x

(i)
t+1).
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How to compute the gradient?

How do compute things only forward pass? Recall FFBS
▶ At time T , sample x̃T ∼ πN

θ (dxT |y1:T ),
▶ t from T − 1 to 1:

▶ Compute smoothing weights

w
(i)
t+1|t ∝ w

(i)
t τθ(x̃t+1|x̄(i)

t ).

▶ Then sample

x̃t ∼
N∑
i=1

w
(i)
t+1|tδx̄(i)

t
(dxt).
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How to compute the gradient?

Forward only smoothing: Assume we have a good approximation of
V θ
t (x

(i)
t ).

▶ Sample x̄
(i)
t+1 ∼ f(·|x(i)t ),

▶ Use it to compute FFBS smoothing weights (with predictive
particles)

w
(i)
t+1|t ∝ w

(i)
t τθ(x̄

(i)
t+1|x

(i)
t ).

and

V θ
t+1(x̄

(i)
t+1) =

N∑
j=1

w
(i)
t+1|t

(
V θ
t (x

(i)
t ) + st+1(x

(i)
t , x

(i)
t+1)

)
.

and build

Sθ,N
t+1 =

N∑
j=1

w
(i)
t+1V

θ
t (x

(i)
t+1).

Forward smoothing.
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(i)
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.
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Is there a faster way? Online gradient descent

An approximation

θt+1 = θt + γ∇ log pθ0:t(yt|y1:t−1)

where

∇ log pθ0:t(yt|y1:t−1) = ∇pθ0:t(y1:t)−∇pθ0:t−1(y1:t−1).

The definition

∇pθ0:t(y1:t) = πθ,t

(
t∑

k=1

sθkk (xt−1, xt)

)
,

therefore

∇ log pθ0:t(yt|y1:t−1) = E
[
sθtt (xt−1, xt)

]
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