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Recall our basic task:

▶ We wanted to sample from distributions π(x) ∝ γ(x) given
only the knowledge of γ(x) and use these samples to estimate
an integral

(φ, π) =

∫
φ(x)π(x) dx

for some function φ.
We will now consider dynamic settings.
▶ We will have a sequence of distributions (π)t≥0 and we will want

to estimate the integrals

(φ, πt) =

∫
φ(x)πt(x) dx

for some function φ.

This is called the filtering problem.
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State-space models
problem definition

y1 y2 . . .

x1x0 x2 . . . xt

yt

Figure: The conditional independence structure of a state-space model.

(xt)t∈N+ : hidden signal process, (yt)t∈N+ the observation process.

x0 ∼ π0(dx0), (prior distribution)
xt|xt−1 ∼ τt(dxt|xt−1), (transition model)

yt|xt ∼ gt(yt|xt), (likelihood)

xt ∈ X where X is the state-space. We use: gt(xt) = gt(yt|xt).
3



State-space models
problem definition

We are interested estimating expectations,

(φ, πt) =

∫
φ(xt)π(xt|y1:t)dxt =

∫
φ(xt)πt(dxt),

sequentially as new data arrives. This problem is known as the fil-
tering problem.

y1 y2 . . .

x1x0 x2 . . . xt

yt
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A simpler problem
Sequential inference

Let us first consider a generic probabilistic setting,

π0(x) and gt(yt|x).

for (yt)t∈N+ a sequence of observations.

We are interested in esti-
mating expectations,

(φ, πt) =

∫
φ(x)π(x|y1:t)dx,

y1 y2 · · · yk

x
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A simpler problem
Sequential inference

Mini-quiz: How would you obtain π(x|y1:t)?

We can use Bayes’ rule iteratively

π(x|y1:t) =
γ(x, y1:t)

p(y1:t)
,

=
gt(yt|x)γ(x, y1:t−1)

p(yt|y1:t−1)p(y1:t−1)
,

=
gt(yt|x)π(x|y1:t−1)

p(yt|y1:t−1)
.

where

p(yt|y1:t−1) =

∫
gt(yt|x)π(x|y1:t−1)dx.

The previous posterior π(x|y1:t−1) is used as the prior for the next
step.
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A simpler problem
Sequential inference: the Gaussian case

Let us assume that

π0(x) = N (x;µ0, V0),

gt(yt|x) = N (yt;Htx,Rt).

Can we compute π(x|y1:t) analytically?

Lemma 1
We obtain π(x|y1:t) = N (x;µt, Vt) where,

µt = µt−1 + Vt−1H
⊤
t (Rt +HtVt−1H

⊤
t )−1(yt −Htµt−1),

Vt = Vt−1 − Vt−1H
⊤
t (Rt +HtVt−1H

⊤
t )−1HtVt−1,

for t ≥ 1.
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Static vs. dynamic setting

Static inference: Given a probability
model,

x ∼ π0(dx),

yt|xt ∼ gt(yt|x),

we are interested in static inference: Esti-
mating π(x|y1:t) sequentially.

y1 y2 · · · yt

x

Dynamic inference: Given a SSM,

x0 ∼ π0(dx0),

xt|xt−1 ∼ τt(dxt|xt−1),

yt|xt ∼ gt(yt|xt),

we are interested in the stochastic filtering
problem: Estimating πt(xt|y1:t).

y1 y2 . . .

x1x0 x2 . . . xt

yt
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State-space models
Algorithmic principle

We are interested in estimating expectations,

(φ, πt) =

∫
φ(xt)πt(xt|y1:t)dxt =

∫
φ(xt)πt(dxt),

sequentially as new data arrives.

y1 y2 . . .

x1x0 x2 . . . xt

yt

Algorithm:
Predict

ξt(dxt) =

∫
πt−1(dxt−1)τt(dxt|xt−1)

Update

πt(dxt) = ξt(dxt)
gt(yt|xt)

p(yt|y1:t−1)
.
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State-space models
Algorithmic principle - prediction

Let us look in detail to these steps:

Prediction: Given πt−1(dxt−1|y1:t−1), we want to compute πt(dxt|y1:t−1).

πt(dxt|y1:t−1) =

∫
πt−1(dxt−1|y1:t−1)τt(dxt|xt−1).

In terms of densities

πt(xt|y1:t−1) =

∫
πt−1(xt−1|y1:t−1)τt(xt|xt−1)dxt−1.
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State-space models
Algorithmic principle - update

We have already seen the update rule, but we modify this in the
dynamic setting: Our prior will now be the predictive distribution
πt(dxt|y1:t−1).

Update: Given πt(dxt|y1:t−1), we want to compute πt(dxt|y1:t).
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γ(xt, y1:t)

p(y1:t)
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State-space models
The Kalman filter: Linear-Gaussian case

Let us assume that

π0(x) = N (x;µ0, V0),

τt(xt|xt−1) = N (xt;Atxt−1, Qt),

gt(yt|xt) = N (yt;Htxt, Rt).

Can we compute π(x|y1:t) analytically?
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State-space models
The Kalman filter: Linear-Gaussian case

Yes, we can!

Lemma 2
Given the optimal filter πt−1(xt−1|y1:t−1) = N (xt−1;µt−1, Vt−1) at
time t− 1 the predictive distribution ξt(xt|y1:t−1) is given by

ξt(xt|y1:t−1) = N (xt; µ̃t, Ṽt),

where,

µ̃t = Atµt−1, (1)

Ṽt = AtVt−1A
⊤
t +Qt. (2)
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State-space models
The Kalman filter: Linear-Gaussian case

Lemma 3
Finally, the optimal filter πt(xt|y1:t) is given by

πt(xt|y1:t−1) = N (xt;µt, Vt),

where,

µt = µ̃t + ṼtH
⊤
t (Rt +HtṼtH

⊤
t )−1(yt −Htµ̃t), (3)

Vt = Ṽt − ṼtH
⊤
t (Rt +HtṼtH

⊤
t )−1HtṼt, (4)

from Lemma 1.

14



State-space models
Kalmanesque filters

What if nonlinearities exist in Gaussian models?

π0(x) = N (x;µ0, V0),

τt(xt|xt−1) = N (xt; at(xt−1), Qt),

gt(yt|xt) = N (yt;ht(xt), Rt).

Can we still do analytical computations?

Yes! We can use the extended Kalman filter (EKF) or the unscented
Kalman filter (UKF).

15
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State-space models
Kalmanesque filters - EKF

Assume that we are given the SSM

π0(x0) = N (x0;µ0, V0),

τt(xt|xt−1) = N (xt; at(xt−1), Qt)

gt(yt|xt) = N (yt;ht(xt), Rt).

where at : X → X, ht : X → Y, Qt ∈ Rdx×dx , and Rt ∈ Rdy×dy .
Assume that the approximate posterior distribution at time t − 1 is
πE
t−1(xt−1) = N (xt−1;µ

E
t−1, V

E
t−1).

16



State-space models
Kalmanesque filters - EKF

If the model is approximately locally linear, one can linearize at(xt)
around µE

t−1 and obtain the dynamical model

āt(xt) = at(µ
E
t−1) +At(xt − µE

t−1) = at(µ
E
t−1) +Atxt −Atµ

E
t−1,

(5)

where

At =
∂at(x)

∂x

∣∣∣∣
x=µE

t−1

.

We can see (5) as a linear model with control inputs. Hence, the
prediction step with this linearized model simply becomes

µ̃E
t = at(µ

E
t−1).

17



State-space models
Kalmanesque filters - EKF

The uncertainty is propagated also as in the KF, since (5) is a linear
model, hence we obtain

Ṽ E
t = AtV

E
t−1A

⊤
t +Qt.

Similarly, given µ̃E
t , in order to proceed with the observation model

we can linearize ht around µ̃E
t , i.e., we construct

h̄t(xt) = ht(µ̃
E
t ) +Ht(xt − µ̃E

t ),

where

Ht =
∂ht(x)

∂x

∣∣∣∣
x=µ̃t

.

Given the linearization, the EKF update step now becomes

µE
t = µ̃E

t−1 + Ṽ E
t H⊤

t (Rt +HtṼ
E
t H⊤

t )−1(yt − ht(µ̃
E
t )),

V E
t = Ṽ E

t − Ṽ E
t H⊤

t (Rt +HtṼ
E
t H⊤

t )−1HtṼ
E
t .
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State-space models
Kalmanesque filters - EKF

Finally, one can compactly summarize the EKF as follows. Given
πE
t−1(xt−1) = N (xt−1;µ

E
t−1, V

E
t−1), the new posterior pdf πE

t (xt) =
N (xt;µ

E
t , V

E
t ) is obtained via

µ̃E
t = at(µ

E
t−1), (6)

Ṽ E
t = AtV

E
t−1A

⊤
t +Qt, (7)

µE
t = µ̃E

t−1 + Ṽ E
t H⊤

t (Rt +HtṼ
E
t H⊤

t )−1(yt − ht(µ̃
E
t )), (8)

V E
t = Ṽ E

t − Ṽ E
t H⊤

t (Rt +HtṼ
E
t H⊤

t )−1HtṼ
E
t . (9)
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State-space models
Kalmanesque filters

Other kinds of Gaussian approximations are very popular:
▶ Unscented Kalman filter (UKF): The UKF uses a deterministic

sampling technique called the unscented transform to obtain a
Gaussian approximation of the posterior distribution.

▶ Gaussian sum filter (GSF): The GSF uses a Gaussian mixture
approximation of the posterior distribution.

▶ ensemble Kalman filter (EnKF): The EnKF uses a Monte Carlo
approximation of the posterior distribution.

Many other variants, very popular in fields like robotics, navigation,
guidance, aerospace, finance, vision, etc.
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State-space models
Kalmanesque filters II - UKF

We can use the unscented transform to obtain a Gaussian approxi-
mation of the posterior distribution.

Let X be a Gaussian random variable X ∼ N (x;µ,Σ).

Say we would like to compute moments of g(X) where g is a non-
linear function.
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State-space models
Kalmanesque filters II - UKF

The unscented transform precisely approximates the moments of
g(X) by the moments of a Gaussian random variable.

The unscented transform is based on the idea of sigma points, which
are chosen deterministically:

σ0 = µ,

σi = µ+
(√

(n+ λ)Σ
)
i
, i = 1, . . . , n,

σi = µ−
(√

(n+ λ)Σ
)
i−n

, i = n+ 1, . . . , 2n,

where λ = α2(n + κ) − n and α and κ are parameters that can be
chosen freely.
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State-space models
Kalmanesque filters II - UKF

How is this idea used given:

π0(x0) = N (x0;µ0, V0),

τt(xt|xt−1) = N (xt; at(xt−1), Qt)

gt(yt|xt) = N (yt;ht(xt), Rt).

Given µt−1, Vt−1, use the nonlinearity at(·) using unscented trans-
form to compute the moments of prediction.

Given µt, Vt, use the nonlinearity ht(·) using unscented transform to
compute the moments of updated posterior.
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State-space models
The smoothing problem

We have been looking at the filtering problem, i.e., estimating πt(xt|y1:t).

What if we want to estimate πt(xt|y1:T ) for T > t?

This is called the smoothing problem. These methods are usually
implemented backwards in time.
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State-space models
The smoothing problem

We have smoothing recursions

π(xt+1|y1:t) =
∫

τ(xt+1|xt)π(xt|y1:t)dxt,

π(xt|y1:T ) = π(xt|y1:t)
∫

τ(xt+1|xt)π(xt+1|y1:T )
π(xt+1|y1:t)

dxt+1.
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State-space models
The smoothing problem

Let us notice

p(xt|xt+1, y1:T ) = p(xt|xt+1, y1:t),

=
p(xt, xt+1|y1:t)
p(xt+1|y1:t)

,

=
π(xt|y1:t)τ(xt+1|xt)

π(xt+1|y1:t)
,

where the last equality follows from the Markov property.

Now we
construct the joint

p(xt+1, xt|y1:T ) = p(xt|xt+1, y1:T )p(xt+1|y1:T ),

=
π(xt|y1:t)τ(xt+1|xt)

π(xt+1|y1:t)
π(xt+1|y1:T ).

By integrating out xt+1, the result follows.
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State-space models
The smoothing problem

Let us consider our linear-Gaussian model again

π0(x) = N (x;µ0, V0),

τt(xt|xt−1) = N (xt;Atxt−1, Qt),

gt(yt|xt) = N (yt;Htxt, Rt).

In this setting, smoothing can be exactly implemented too.

The resulting algorithm is called the Rauch-Tung-Striebel (RTS)
smoother.
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State-space models
The smoothing problem

Assume we have computed filter moments (µt, Vt)
T
t=0.

The smoother
is then given as

µs
T = µT ,

V s
T = VT ,

µs
t = µt + Jt(µ

s
t+1 −Atµt),

V s
t = Vt + Jt(V

s
t+1 − Vt)J

⊤
t ,

where

Jt = VtA
⊤
t V̂

−1
t+1.
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Deterministic approximations are only useful in certain settings where
we can ensure
▶ Exact or approximate linearity
▶ Gaussianity

We will now introduce a general Monte Carlo approach to estimate
posterior distributions πN

t (dxt|y1:t).

Particle filters.
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Particle filters

y1 y2 . . .

x1x0 x2 . . . xt

yt

Figure: The conditional independence structure of a state-space model.

(xt)t∈N+ : hidden signal process, (yt)t∈N+ the observation process.

x0 ∼ π0(dx0), (prior distribution)
xt|xt−1 ∼ τt(dxt|xt−1), (transition model)

yt|xt ∼ gt(yt|xt), (likelihood)

xt ∈ X where X is the state-space. We use: gt(xt) = gt(yt|xt).
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Particle filters

Before we go into the details of the derivation, let us directly look at
the algorithm.

A general algorithm to estimate expectations of any
test function φ(xt) given y1:t.
▶ Sampling: draw

x̄
(i)
t ∼ τt(dxt|x(i)t−1)

independently for every i = 1, . . . , N .
▶ Weighting: compute

w
(i)
t = gt(x̄

(i)
t )/Z̄N

t

for every i = 1, . . . , N , where Z̄N
t =

∑N
i=1 gt(x̄

(i)
t ).

▶ Resampling: draw independently,

x
(i)
t ∼ π̃t(dx) :=

∑
i

w
(i)
t δ

x̄
(i)
t
(dx) for i = 1, ..., N.

πN
t−1 →︸︷︷︸

sampling

ξNt →︸︷︷︸
weighting

π̃N
t →︸︷︷︸

resampling

πN
t .
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Particle filters
Derivation

Where does the algorithm come from?

Surprisingly, we will not use the prediction-update recursions directly
unlike in the Kalman filter.

We will instead develop an importance sampler on the path space.
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Particle filters
Derivation

The key recursion on the path distributions:

πt(x0:t|y1:t) =
γ(x0:t, y1:t)

p(y1:t)

=
γ(x0:t−1, y1:t−1)

p(y1:t−1)

τ(xt|xt−1)g(yt|xt)
p(yt|y1:t−1)

= πt(x0:t−1|y1:t−1)
τ(xt|xt−1)g(yt|xt)

p(yt|y1:t−1)
.
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Particle filters
Derivation

Recall importance sampling: Assume that we aim at estimating ex-
pectations of a given density π, i.e., we would like to compute

(φ, π) =

∫
φ(x)π(x)dx.

We also assume that sampling from this density is not possible and
we can only evaluate the unnormalised density γ(x).
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Particle filters
Derivation

One way to estimate this expectation is to sample from a proposal
measure q and rewrite the integral as

(φ, π) =

∫
φ(x)π(x)dx,

=

∫
φ(x)γ(x)q(x) q(x)dx∫ γ(x)

q(x) q(x)dx
,

≈
1
N

∑N
i=1 φ(x

(i))γ(x
(i))

q(x(i))

1
N

∑N
i=1

γ(x(i))

q(x(i))

, x(i) ∼ q, i = 1, . . . , N.

(10)
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Particle filters
Derivation

Let us now introduce the unnormalised weight function

W (x) =
γ(x)

q(x)
. (11)

With this, the Eq. (10) becomes

(φ, πN ) =
1
N

∑N
i=1 φ(x

(i))W (x(i))
1
N

∑N
i=1W (x(i))

, x(i) ∼ q, i = 1, . . . , N,

=

∑N
i=1 φ(x

(i))W(i)∑N
i=1W

(i)
, x(i) ∼ q, i = 1, . . . , N,

where W(i) = W (x(i)) are called the unnormalised weights.
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Particle filters
Derivation

Finally, we can obtain the estimator in a more convenient form,

(φ, πN ) =

N∑
i=1

w(i)φ(x(i)).

by introducing the normalised importance weights

w(i) =
w(i)∑N
i=1 w

(i)
, (12)

for i = 1, . . . , N . We note that the particle approximation of π in
this case is given as

πN (dx) =

N∑
i=1

w(i)δx(i)(dx). (13)

In the following, we will derive the importance sampler aiming at
building particle approximations of πt(x0:t|y1:t) for a state-space
model.
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Particle filters
Derivation

The proposal over the entire path space x0:t denoted q(x0:t). Note

γ(x0:t, y1:t) = µ(x0)

t∏
k=1

τ(xk|xk−1)g(yk|xk). (14)

This simply the joint distribution of all variables (x0:t, y1:t). Just as
in the regular importance sampling

W0:t(x0:t) =
γ(x0:t, y1:t)

q(x0:t)
.

Obviously, given samples from the proposal x(i)0:t ∼ q(x0:t), by evalu-
ating the weight W

(i)
0:t = W0:t(x

(i)
0:t) for i = 1, . . . , N and building a

particle approximation

πN (dx0:t) =
N∑
i=1

W
(i)
0:tδx(i)

0:t

(dx0:t).
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Derivation
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Particle filters
Derivation - sequential approach

Let us consider a decomposition of the proposal

q(x0:t) = q(x0)

t∏
k=1

q(xk|x1:k−1).

Note that, based on this, we can build a recursion for the function
W (x0:t) by writing

W0:t(x0:t) =
γ(x0:t, y1:t)

q(x0:t)
,

=
γ(x0:t−1, y1:t−1)

q(x0:t−1)

τ(xt|xt−1)g(yt|xt)
q(xt|x0:t−1)

,

= W0:t−1(x0:t−1)
τ(xt|xt−1)g(yt|xt)

q(xt|x0:t−1)
,

= W0:t−1(x0:t−1)Wt(x0:t). (15)
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Particle filters
Derivation - sequential approach

This is still not optimal, as we still need to store the whole path.

We can further simplify our proposal by assuming a Markov structure.

q(x0:t) = q(x0)
t∏

k=1

q(xk|xk−1).

This allows us to obtain purely recursive weight computation

W0:t(x0:t) =
γ(x0:t, y1:t)

q(x0:t)
, (16)

=
γ(x0:t−1, y1:t−1)

q(x0:t−1)

τ(xt|xt−1)g(yt|xt)
q(xt|xt−1)

, (17)

= W0:t−1(x0:t−1)
τ(xt|xt−1)g(yt|xt)

q(xt|xt−1)
, (18)

= W0:t−1(x0:t−1)Wt(xt, xt−1), (19)
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Particle filters
Sequential Importance Sampling (SIS)

Let us implement it. Assume that we have computed the unnor-
malised weights W

(i)
1:t−1 = W (x

(i)
0:t−1) recursively and obtained sam-

ples x(i)0:t−1. We only need the last sample x
(i)
t−1 to obtain the weight

update given in (19). And also note that W
(i)
1:t−1 for i = 1, . . . , N

are just numbers, they do not need the storage of previous samples.
We can now sample from the Markov proposal x(i)t ∼ q(xt|x(i)t−1) and
compute the weights of the path sampler at time t as

W
(i)
1:t = W

(i)
1:t−1 ×W

(i)
t ,

where

W
(i)
t =

τ(x
(i)
t |x(i)t−1)g(yt|x

(i)
t )

q(x
(i)
t |x(i)t−1)

.
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Particle filters
Sequential Importance Sampling (SIS)

Given the samples x
(i)
t−1, we first perform sampling step

x
(i)
t ∼ q(xt|xt−1)

and then compute

W
(i)
t =

τ(x
(i)
t |x(i)t−1)g(yt|x

(i)
t )

q(x
(i)
t |x(i)t−1)

.

and update

W
(i)
1:t = W

(i)
1:t−1 ×W

(i)
t .

These are unnormalised weights and we normalise them to obtain,

w
(i)
1:t =

W
(i)
1:t∑N

i=1W
(i)
1:t

,
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Particle filters
Sequential Importance Sampling (SIS)

which finally leads to the empirical measure,

πN (dx0:t) =
N∑
i=1

w
(i)
1:tδx(i)

0:t

(dx0:t).
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Particle filters
Sequential Importance Sampling (SIS)

▶ Sample x
(i)
0 ∼ q(x0) for i = 1, . . . , N .

▶ For t ≥ 1
▶ Sample: x

(i)
t ∼ q(xt|x(i)

t−1),
▶ Compute weights:

W
(i)
t =

τ(x
(i)
t |x(i)

t−1)g(yt|x
(i)
t )

q(x
(i)
t |x(i)

t−1)
.

and update

W
(i)
1:t = W

(i)
1:t−1 ×W

(i)
t .

Normalise weights,

w
(i)
1:t =

W
(i)
1:t∑N

i=1 W
(i)
1:t

.

▶ Report

πN
t (dx0:t) =

N∑
i=1

w
(i)
1:tδx(i)

0:t
(dx0:t).

45



Particle filters
Sequential Importance Sampling (SIS)

There is a well-known problem with this scheme: Weight degeneracy.

To resolve this, the approach is to introduce resampling steps.
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Particle filters
Sequential Importance Sampling - Resampling (SISR)

▶ Sample x
(i)
0 ∼ q(x0) for i = 1, . . . , N .

▶ For t ≥ 1
▶ Sample: x

(i)
t ∼ q(xt|x(i)

t−1),
▶ Compute weights:

W
(i)
t =

τ(x
(i)
t |x(i)

t−1)g(yt|x
(i)
t )

q(x
(i)
t |x(i)

t−1)
.

Normalise: w
(i)
1:t = W

(i)
1:t/

∑N
i=1 W

(i)
1:t

▶ Report

πN
t (dx0:t) =

N∑
i=1

w
(i)
1:tδx(i)

0:t
(dx0:t).

▶ Resample:

x
(i)
t ∼

N∑
i=1

w
(i)
t δ

x̃
(i)
t
(dxt).
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Particle filters
Bootstrap Particle filter

The bootstrap particle filter (BPF) is the SISR algorithm with the
following choices:

q(xt|xt−1) = τ(xt|xt−1),
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Particle filters
Bootstrap particle filter

▶ Sample x
(i)
0 ∼ q(x0) for i = 1, . . . , N .

▶ For t ≥ 1
▶ Sample: x

(i)
t ∼ τ(xt|x(i)

t−1),
▶ Compute weights:

W
(i)
t = g(yt|x(i)

t ),

Normalise: w
(i)
1:t = W

(i)
1:t/

∑N
i=1 W

(i)
1:t

▶ Report

πN
t (dx0:t) =

N∑
i=1

w
(i)
1:tδx(i)

0:t
(dx0:t).

▶ Resample:

x
(i)
t ∼

N∑
i=1

w
(i)
t δ

x̃
(i)
t
(dxt).
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