
Advanced Computational Methods in Statistics
Lecture 3

O. Deniz Akyildiz

LTCC Advanced Course

November 27, 2023

Recall our basic task:

▶ We wanted to sample from distributions π(x) ∝ γ(x) given
only the knowledge of γ(x) and use these samples to estimate
an integral

(φ, π) =

∫
φ(x)π(x) dx

for some function φ.
We will now consider dynamic settings.
▶ We will have a sequence of distributions (π)t≥0 and we will want

to estimate the integrals

(φ, πt) =

∫
φ(x)πt(x) dx

for some function φ.

This is called the filtering problem.

2

Recall our basic task:
▶ We wanted to sample from distributions π(x) ∝ γ(x) given

only the knowledge of γ(x) and use these samples to estimate
an integral

(φ, π) =

∫
φ(x)π(x) dx

for some function φ.

We will now consider dynamic settings.
▶ We will have a sequence of distributions (π)t≥0 and we will want

to estimate the integrals

(φ, πt) =

∫
φ(x)πt(x) dx

for some function φ.

This is called the filtering problem.

2

Recall our basic task:
▶ We wanted to sample from distributions π(x) ∝ γ(x) given

only the knowledge of γ(x) and use these samples to estimate
an integral

(φ, π) =

∫
φ(x)π(x) dx

for some function φ.
We will now consider dynamic settings.
▶ We will have a sequence of distributions (π)t≥0 and we will want

to estimate the integrals

(φ, πt) =

∫
φ(x)πt(x) dx

for some function φ.

This is called the filtering problem.

2

Recall our basic task:
▶ We wanted to sample from distributions π(x) ∝ γ(x) given

only the knowledge of γ(x) and use these samples to estimate
an integral

(φ, π) =

∫
φ(x)π(x) dx

for some function φ.
We will now consider dynamic settings.
▶ We will have a sequence of distributions (π)t≥0 and we will want

to estimate the integrals

(φ, πt) =

∫
φ(x)πt(x) dx

for some function φ.

This is called the filtering problem.

2

State-space models
problem definition

y1 y2 . . .

x1x0 x2 . . . xt

yt

Figure: The conditional independence structure of a state-space model.

(xt)t∈N+ : hidden signal process, (yt)t∈N+ the observation process.

x0 ∼ π0(dx0), (prior distribution)
xt|xt−1 ∼ τt(dxt|xt−1), (transition model)

yt|xt ∼ gt(yt|xt), (likelihood)

xt ∈ X where X is the state-space. We use: gt(xt) = gt(yt|xt).
3

State-space models
problem definition

We are interested estimating expectations,

(φ, πt) =

∫
φ(xt)π(xt|y1:t)dxt =

∫
φ(xt)πt(dxt),

sequentially as new data arrives. This problem is known as the fil-
tering problem.

y1 y2 . . .

x1x0 x2 . . . xt

yt

4

A simpler problem
Sequential inference

Let us first consider a generic probabilistic setting,

π0(x) and gt(yt|x).

for (yt)t∈N+ a sequence of observations.

We are interested in esti-
mating expectations,

(φ, πt) =

∫
φ(x)π(x|y1:t)dx,

y1 y2 · · · yk

x

5

A simpler problem
Sequential inference

Let us first consider a generic probabilistic setting,

π0(x) and gt(yt|x).

for (yt)t∈N+ a sequence of observations. We are interested in esti-
mating expectations,

(φ, πt) =

∫
φ(x)π(x|y1:t)dx,

y1 y2 · · · yk

x

5

A simpler problem
Sequential inference

Let us first consider a generic probabilistic setting,

π0(x) and gt(yt|x).

for (yt)t∈N+ a sequence of observations. We are interested in esti-
mating expectations,

(φ, πt) =

∫
φ(x)π(x|y1:t)dx,

y1 y2 · · · yk

x

5

A simpler problem
Sequential inference

Mini-quiz: How would you obtain π(x|y1:t)?

We can use Bayes’ rule iteratively

π(x|y1:t) =
γ(x, y1:t)

p(y1:t)
,

=
gt(yt|x)γ(x, y1:t−1)

p(yt|y1:t−1)p(y1:t−1)
,

=
gt(yt|x)π(x|y1:t−1)

p(yt|y1:t−1)
.

where

p(yt|y1:t−1) =

∫
gt(yt|x)π(x|y1:t−1)dx.

The previous posterior π(x|y1:t−1) is used as the prior for the next
step.

6

A simpler problem
Sequential inference

Mini-quiz: How would you obtain π(x|y1:t)?

We can use Bayes’ rule iteratively

π(x|y1:t) =
γ(x, y1:t)

p(y1:t)
,

=
gt(yt|x)γ(x, y1:t−1)

p(yt|y1:t−1)p(y1:t−1)
,

=
gt(yt|x)π(x|y1:t−1)

p(yt|y1:t−1)
.

where

p(yt|y1:t−1) =

∫
gt(yt|x)π(x|y1:t−1)dx.

The previous posterior π(x|y1:t−1) is used as the prior for the next
step.

6

A simpler problem
Sequential inference

Mini-quiz: How would you obtain π(x|y1:t)?

We can use Bayes’ rule iteratively

π(x|y1:t) =
γ(x, y1:t)

p(y1:t)
,

=
gt(yt|x)γ(x, y1:t−1)

p(yt|y1:t−1)p(y1:t−1)
,

=
gt(yt|x)π(x|y1:t−1)

p(yt|y1:t−1)
.

where

p(yt|y1:t−1) =

∫
gt(yt|x)π(x|y1:t−1)dx.

The previous posterior π(x|y1:t−1) is used as the prior for the next
step.

6

A simpler problem
Sequential inference: the Gaussian case

Let us assume that

π0(x) = N (x;µ0, V0),

gt(yt|x) = N (yt;Htx,Rt).

Can we compute π(x|y1:t) analytically?

Lemma 1
We obtain π(x|y1:t) = N (x;µt, Vt) where,

µt = µt−1 + Vt−1H
⊤
t (Rt +HtVt−1H

⊤
t)−1(yt −Htµt−1),

Vt = Vt−1 − Vt−1H
⊤
t (Rt +HtVt−1H

⊤
t)−1HtVt−1,

for t ≥ 1.

7

A simpler problem
Sequential inference: the Gaussian case

Let us assume that

π0(x) = N (x;µ0, V0),

gt(yt|x) = N (yt;Htx,Rt).

Can we compute π(x|y1:t) analytically?

Lemma 1
We obtain π(x|y1:t) = N (x;µt, Vt) where,

µt = µt−1 + Vt−1H
⊤
t (Rt +HtVt−1H

⊤
t)−1(yt −Htµt−1),

Vt = Vt−1 − Vt−1H
⊤
t (Rt +HtVt−1H

⊤
t)−1HtVt−1,

for t ≥ 1.

7

A simpler problem
Sequential inference: the Gaussian case

Let us assume that

π0(x) = N (x;µ0, V0),

gt(yt|x) = N (yt;Htx,Rt).

Can we compute π(x|y1:t) analytically?

Lemma 1
We obtain π(x|y1:t) = N (x;µt, Vt) where,

µt = µt−1 + Vt−1H
⊤
t (Rt +HtVt−1H

⊤
t)−1(yt −Htµt−1),

Vt = Vt−1 − Vt−1H
⊤
t (Rt +HtVt−1H

⊤
t)−1HtVt−1,

for t ≥ 1.

7

Static vs. dynamic setting

Static inference: Given a probability
model,

x ∼ π0(dx),

yt|xt ∼ gt(yt|x),

we are interested in static inference: Esti-
mating π(x|y1:t) sequentially.

y1 y2 · · · yt

x

Dynamic inference: Given a SSM,

x0 ∼ π0(dx0),

xt|xt−1 ∼ τt(dxt|xt−1),

yt|xt ∼ gt(yt|xt),

we are interested in the stochastic filtering
problem: Estimating πt(xt|y1:t).

y1 y2 . . .

x1x0 x2 . . . xt

yt

8

State-space models
Algorithmic principle

We are interested in estimating expectations,

(φ, πt) =

∫
φ(xt)πt(xt|y1:t)dxt =

∫
φ(xt)πt(dxt),

sequentially as new data arrives.

y1 y2 . . .

x1x0 x2 . . . xt

yt

Algorithm:
Predict

ξt(dxt) =

∫
πt−1(dxt−1)τt(dxt|xt−1)

Update

πt(dxt) = ξt(dxt)
gt(yt|xt)

p(yt|y1:t−1)
.

9

State-space models
Algorithmic principle - prediction

Let us look in detail to these steps:

Prediction: Given πt−1(dxt−1|y1:t−1), we want to compute πt(dxt|y1:t−1).

πt(dxt|y1:t−1) =

∫
πt−1(dxt−1|y1:t−1)τt(dxt|xt−1).

In terms of densities

πt(xt|y1:t−1) =

∫
πt−1(xt−1|y1:t−1)τt(xt|xt−1)dxt−1.

10

State-space models
Algorithmic principle - prediction

Let us look in detail to these steps:

Prediction: Given πt−1(dxt−1|y1:t−1), we want to compute πt(dxt|y1:t−1).

πt(dxt|y1:t−1) =

∫
πt−1(dxt−1|y1:t−1)τt(dxt|xt−1).

In terms of densities

πt(xt|y1:t−1) =

∫
πt−1(xt−1|y1:t−1)τt(xt|xt−1)dxt−1.

10

State-space models
Algorithmic principle - prediction

Let us look in detail to these steps:

Prediction: Given πt−1(dxt−1|y1:t−1), we want to compute πt(dxt|y1:t−1).

πt(dxt|y1:t−1) =

∫
πt−1(dxt−1|y1:t−1)τt(dxt|xt−1).

In terms of densities

πt(xt|y1:t−1) =

∫
πt−1(xt−1|y1:t−1)τt(xt|xt−1)dxt−1.

10

State-space models
Algorithmic principle - update

We have already seen the update rule, but we modify this in the
dynamic setting: Our prior will now be the predictive distribution
πt(dxt|y1:t−1).

Update: Given πt(dxt|y1:t−1), we want to compute πt(dxt|y1:t).

πt(xt|y1:t) =
γ(xt, y1:t)

p(y1:t)
,

=
gt(yt|xt)πt(xt|y1:t−1)

p(yt|y1:t−1)
.

where

p(yt|y1:t−1) =

∫
gt(yt|xt)πt(xt|y1:t−1)dxt.

11

State-space models
Algorithmic principle - update

We have already seen the update rule, but we modify this in the
dynamic setting: Our prior will now be the predictive distribution
πt(dxt|y1:t−1).

Update: Given πt(dxt|y1:t−1), we want to compute πt(dxt|y1:t).

πt(xt|y1:t) =
γ(xt, y1:t)

p(y1:t)
,

=
gt(yt|xt)πt(xt|y1:t−1)

p(yt|y1:t−1)
.

where

p(yt|y1:t−1) =

∫
gt(yt|xt)πt(xt|y1:t−1)dxt.

11

State-space models
Algorithmic principle - update

We have already seen the update rule, but we modify this in the
dynamic setting: Our prior will now be the predictive distribution
πt(dxt|y1:t−1).

Update: Given πt(dxt|y1:t−1), we want to compute πt(dxt|y1:t).

πt(xt|y1:t) =
γ(xt, y1:t)

p(y1:t)
,

=
gt(yt|xt)πt(xt|y1:t−1)

p(yt|y1:t−1)
.

where

p(yt|y1:t−1) =

∫
gt(yt|xt)πt(xt|y1:t−1)dxt.

11

State-space models
The Kalman filter: Linear-Gaussian case

Let us assume that

π0(x) = N (x;µ0, V0),

τt(xt|xt−1) = N (xt;Atxt−1, Qt),

gt(yt|xt) = N (yt;Htxt, Rt).

Can we compute π(x|y1:t) analytically?

12

State-space models
The Kalman filter: Linear-Gaussian case

Let us assume that

π0(x) = N (x;µ0, V0),

τt(xt|xt−1) = N (xt;Atxt−1, Qt),

gt(yt|xt) = N (yt;Htxt, Rt).

Can we compute π(x|y1:t) analytically?

12

State-space models
The Kalman filter: Linear-Gaussian case

Yes, we can!

Lemma 2
Given the optimal filter πt−1(xt−1|y1:t−1) = N (xt−1;µt−1, Vt−1) at
time t− 1 the predictive distribution ξt(xt|y1:t−1) is given by

ξt(xt|y1:t−1) = N (xt; µ̃t, Ṽt),

where,

µ̃t = Atµt−1, (1)

Ṽt = AtVt−1A
⊤
t +Qt. (2)

13

State-space models
The Kalman filter: Linear-Gaussian case

Yes, we can!

Lemma 2
Given the optimal filter πt−1(xt−1|y1:t−1) = N (xt−1;µt−1, Vt−1) at
time t− 1 the predictive distribution ξt(xt|y1:t−1) is given by

ξt(xt|y1:t−1) = N (xt; µ̃t, Ṽt),

where,

µ̃t = Atµt−1, (1)

Ṽt = AtVt−1A
⊤
t +Qt. (2)

13

State-space models
The Kalman filter: Linear-Gaussian case

Lemma 3
Finally, the optimal filter πt(xt|y1:t) is given by

πt(xt|y1:t−1) = N (xt;µt, Vt),

where,

µt = µ̃t + ṼtH
⊤
t (Rt +HtṼtH

⊤
t)−1(yt −Htµ̃t), (3)

Vt = Ṽt − ṼtH
⊤
t (Rt +HtṼtH

⊤
t)−1HtṼt, (4)

from Lemma 1.

14

State-space models
Kalmanesque filters

What if nonlinearities exist in Gaussian models?

π0(x) = N (x;µ0, V0),

τt(xt|xt−1) = N (xt; at(xt−1), Qt),

gt(yt|xt) = N (yt;ht(xt), Rt).

Can we still do analytical computations?

Yes! We can use the extended Kalman filter (EKF) or the unscented
Kalman filter (UKF).

15

State-space models
Kalmanesque filters

What if nonlinearities exist in Gaussian models?

π0(x) = N (x;µ0, V0),

τt(xt|xt−1) = N (xt; at(xt−1), Qt),

gt(yt|xt) = N (yt;ht(xt), Rt).

Can we still do analytical computations?

Yes! We can use the extended Kalman filter (EKF) or the unscented
Kalman filter (UKF).

15

State-space models
Kalmanesque filters - EKF

Assume that we are given the SSM

π0(x0) = N (x0;µ0, V0),

τt(xt|xt−1) = N (xt; at(xt−1), Qt)

gt(yt|xt) = N (yt;ht(xt), Rt).

where at : X → X, ht : X → Y, Qt ∈ Rdx×dx , and Rt ∈ Rdy×dy .
Assume that the approximate posterior distribution at time t − 1 is
πE
t−1(xt−1) = N (xt−1;µ

E
t−1, V

E
t−1).

16

State-space models
Kalmanesque filters - EKF

If the model is approximately locally linear, one can linearize at(xt)
around µE

t−1 and obtain the dynamical model

āt(xt) = at(µ
E
t−1) +At(xt − µE

t−1) = at(µ
E
t−1) +Atxt −Atµ

E
t−1,

(5)

where

At =
∂at(x)

∂x

∣∣∣∣
x=µE

t−1

.

We can see (5) as a linear model with control inputs. Hence, the
prediction step with this linearized model simply becomes

µ̃E
t = at(µ

E
t−1).

17

State-space models
Kalmanesque filters - EKF

The uncertainty is propagated also as in the KF, since (5) is a linear
model, hence we obtain

Ṽ E
t = AtV

E
t−1A

⊤
t +Qt.

Similarly, given µ̃E
t , in order to proceed with the observation model

we can linearize ht around µ̃E
t , i.e., we construct

h̄t(xt) = ht(µ̃
E
t) +Ht(xt − µ̃E

t),

where

Ht =
∂ht(x)

∂x

∣∣∣∣
x=µ̃t

.

Given the linearization, the EKF update step now becomes

µE
t = µ̃E

t−1 + Ṽ E
t H⊤

t (Rt +HtṼ
E
t H⊤

t)−1(yt − ht(µ̃
E
t)),

V E
t = Ṽ E

t − Ṽ E
t H⊤

t (Rt +HtṼ
E
t H⊤

t)−1HtṼ
E
t .

18

State-space models
Kalmanesque filters - EKF

Finally, one can compactly summarize the EKF as follows. Given
πE
t−1(xt−1) = N (xt−1;µ

E
t−1, V

E
t−1), the new posterior pdf πE

t (xt) =
N (xt;µ

E
t , V

E
t) is obtained via

µ̃E
t = at(µ

E
t−1), (6)

Ṽ E
t = AtV

E
t−1A

⊤
t +Qt, (7)

µE
t = µ̃E

t−1 + Ṽ E
t H⊤

t (Rt +HtṼ
E
t H⊤

t)−1(yt − ht(µ̃
E
t)), (8)

V E
t = Ṽ E

t − Ṽ E
t H⊤

t (Rt +HtṼ
E
t H⊤

t)−1HtṼ
E
t . (9)

19

State-space models
Kalmanesque filters

Other kinds of Gaussian approximations are very popular:
▶ Unscented Kalman filter (UKF): The UKF uses a deterministic

sampling technique called the unscented transform to obtain a
Gaussian approximation of the posterior distribution.

▶ Gaussian sum filter (GSF): The GSF uses a Gaussian mixture
approximation of the posterior distribution.

▶ ensemble Kalman filter (EnKF): The EnKF uses a Monte Carlo
approximation of the posterior distribution.

Many other variants, very popular in fields like robotics, navigation,
guidance, aerospace, finance, vision, etc.

20

State-space models
Kalmanesque filters

Other kinds of Gaussian approximations are very popular:
▶ Unscented Kalman filter (UKF): The UKF uses a deterministic

sampling technique called the unscented transform to obtain a
Gaussian approximation of the posterior distribution.

▶ Gaussian sum filter (GSF): The GSF uses a Gaussian mixture
approximation of the posterior distribution.

▶ ensemble Kalman filter (EnKF): The EnKF uses a Monte Carlo
approximation of the posterior distribution.

Many other variants, very popular in fields like robotics, navigation,
guidance, aerospace, finance, vision, etc.

20

State-space models
Kalmanesque filters

Other kinds of Gaussian approximations are very popular:
▶ Unscented Kalman filter (UKF): The UKF uses a deterministic

sampling technique called the unscented transform to obtain a
Gaussian approximation of the posterior distribution.

▶ Gaussian sum filter (GSF): The GSF uses a Gaussian mixture
approximation of the posterior distribution.

▶ ensemble Kalman filter (EnKF): The EnKF uses a Monte Carlo
approximation of the posterior distribution.

Many other variants, very popular in fields like robotics, navigation,
guidance, aerospace, finance, vision, etc.

20

State-space models
Kalmanesque filters

Other kinds of Gaussian approximations are very popular:
▶ Unscented Kalman filter (UKF): The UKF uses a deterministic

sampling technique called the unscented transform to obtain a
Gaussian approximation of the posterior distribution.

▶ Gaussian sum filter (GSF): The GSF uses a Gaussian mixture
approximation of the posterior distribution.

▶ ensemble Kalman filter (EnKF): The EnKF uses a Monte Carlo
approximation of the posterior distribution.

Many other variants, very popular in fields like robotics, navigation,
guidance, aerospace, finance, vision, etc.

20

State-space models
Kalmanesque filters II - UKF

We can use the unscented transform to obtain a Gaussian approxi-
mation of the posterior distribution.

Let X be a Gaussian random variable X ∼ N (x;µ,Σ).

Say we would like to compute moments of g(X) where g is a non-
linear function.

21

State-space models
Kalmanesque filters II - UKF

We can use the unscented transform to obtain a Gaussian approxi-
mation of the posterior distribution.

Let X be a Gaussian random variable X ∼ N (x;µ,Σ).

Say we would like to compute moments of g(X) where g is a non-
linear function.

21

State-space models
Kalmanesque filters II - UKF

We can use the unscented transform to obtain a Gaussian approxi-
mation of the posterior distribution.

Let X be a Gaussian random variable X ∼ N (x;µ,Σ).

Say we would like to compute moments of g(X) where g is a non-
linear function.

21

State-space models
Kalmanesque filters II - UKF

The unscented transform precisely approximates the moments of
g(X) by the moments of a Gaussian random variable.

The unscented transform is based on the idea of sigma points, which
are chosen deterministically:

σ0 = µ,

σi = µ+
(√

(n+ λ)Σ
)
i
, i = 1, . . . , n,

σi = µ−
(√

(n+ λ)Σ
)
i−n

, i = n+ 1, . . . , 2n,

where λ = α2(n + κ) − n and α and κ are parameters that can be
chosen freely.

22

State-space models
Kalmanesque filters II - UKF

The unscented transform precisely approximates the moments of
g(X) by the moments of a Gaussian random variable.

The unscented transform is based on the idea of sigma points, which
are chosen deterministically:

σ0 = µ,

σi = µ+
(√

(n+ λ)Σ
)
i
, i = 1, . . . , n,

σi = µ−
(√

(n+ λ)Σ
)
i−n

, i = n+ 1, . . . , 2n,

where λ = α2(n + κ) − n and α and κ are parameters that can be
chosen freely.

22

State-space models
Kalmanesque filters II - UKF

How is this idea used given:

π0(x0) = N (x0;µ0, V0),

τt(xt|xt−1) = N (xt; at(xt−1), Qt)

gt(yt|xt) = N (yt;ht(xt), Rt).

Given µt−1, Vt−1, use the nonlinearity at(·) using unscented trans-
form to compute the moments of prediction.

Given µt, Vt, use the nonlinearity ht(·) using unscented transform to
compute the moments of updated posterior.

23

State-space models
Kalmanesque filters II - UKF

How is this idea used given:

π0(x0) = N (x0;µ0, V0),

τt(xt|xt−1) = N (xt; at(xt−1), Qt)

gt(yt|xt) = N (yt;ht(xt), Rt).

Given µt−1, Vt−1, use the nonlinearity at(·) using unscented trans-
form to compute the moments of prediction.

Given µt, Vt, use the nonlinearity ht(·) using unscented transform to
compute the moments of updated posterior.

23

State-space models
Kalmanesque filters II - UKF

How is this idea used given:

π0(x0) = N (x0;µ0, V0),

τt(xt|xt−1) = N (xt; at(xt−1), Qt)

gt(yt|xt) = N (yt;ht(xt), Rt).

Given µt−1, Vt−1, use the nonlinearity at(·) using unscented trans-
form to compute the moments of prediction.

Given µt, Vt, use the nonlinearity ht(·) using unscented transform to
compute the moments of updated posterior.

23

State-space models
The smoothing problem

We have been looking at the filtering problem, i.e., estimating πt(xt|y1:t).

What if we want to estimate πt(xt|y1:T) for T > t?

This is called the smoothing problem. These methods are usually
implemented backwards in time.

24

State-space models
The smoothing problem

We have been looking at the filtering problem, i.e., estimating πt(xt|y1:t).

What if we want to estimate πt(xt|y1:T) for T > t?

This is called the smoothing problem. These methods are usually
implemented backwards in time.

24

State-space models
The smoothing problem

We have been looking at the filtering problem, i.e., estimating πt(xt|y1:t).

What if we want to estimate πt(xt|y1:T) for T > t?

This is called the smoothing problem. These methods are usually
implemented backwards in time.

24

State-space models
The smoothing problem

We have smoothing recursions

π(xt+1|y1:t) =
∫

τ(xt+1|xt)π(xt|y1:t)dxt,

π(xt|y1:T) = π(xt|y1:t)
∫

τ(xt+1|xt)π(xt+1|y1:T)
π(xt+1|y1:t)

dxt+1.

25

State-space models
The smoothing problem

Let us notice

p(xt|xt+1, y1:T) = p(xt|xt+1, y1:t),

=
p(xt, xt+1|y1:t)
p(xt+1|y1:t)

,

=
π(xt|y1:t)τ(xt+1|xt)

π(xt+1|y1:t)
,

where the last equality follows from the Markov property.

Now we
construct the joint

p(xt+1, xt|y1:T) = p(xt|xt+1, y1:T)p(xt+1|y1:T),

=
π(xt|y1:t)τ(xt+1|xt)

π(xt+1|y1:t)
π(xt+1|y1:T).

By integrating out xt+1, the result follows.

26

State-space models
The smoothing problem

Let us notice

p(xt|xt+1, y1:T) = p(xt|xt+1, y1:t),

=
p(xt, xt+1|y1:t)
p(xt+1|y1:t)

,

=
π(xt|y1:t)τ(xt+1|xt)

π(xt+1|y1:t)
,

where the last equality follows from the Markov property. Now we
construct the joint

p(xt+1, xt|y1:T) = p(xt|xt+1, y1:T)p(xt+1|y1:T),

=
π(xt|y1:t)τ(xt+1|xt)

π(xt+1|y1:t)
π(xt+1|y1:T).

By integrating out xt+1, the result follows.
26

State-space models
The smoothing problem

Let us consider our linear-Gaussian model again

π0(x) = N (x;µ0, V0),

τt(xt|xt−1) = N (xt;Atxt−1, Qt),

gt(yt|xt) = N (yt;Htxt, Rt).

In this setting, smoothing can be exactly implemented too.

The resulting algorithm is called the Rauch-Tung-Striebel (RTS)
smoother.

27

State-space models
The smoothing problem

Let us consider our linear-Gaussian model again

π0(x) = N (x;µ0, V0),

τt(xt|xt−1) = N (xt;Atxt−1, Qt),

gt(yt|xt) = N (yt;Htxt, Rt).

In this setting, smoothing can be exactly implemented too.

The resulting algorithm is called the Rauch-Tung-Striebel (RTS)
smoother.

27

State-space models
The smoothing problem

Assume we have computed filter moments (µt, Vt)
T
t=0.

The smoother
is then given as

µs
T = µT ,

V s
T = VT ,

µs
t = µt + Jt(µ

s
t+1 −Atµt),

V s
t = Vt + Jt(V

s
t+1 − Vt)J

⊤
t ,

where

Jt = VtA
⊤
t V̂

−1
t+1.

28

State-space models
The smoothing problem

Assume we have computed filter moments (µt, Vt)
T
t=0. The smoother

is then given as

µs
T = µT ,

V s
T = VT ,

µs
t = µt + Jt(µ

s
t+1 −Atµt),

V s
t = Vt + Jt(V

s
t+1 − Vt)J

⊤
t ,

where

Jt = VtA
⊤
t V̂

−1
t+1.

28

State-space models
The smoothing problem

Assume we have computed filter moments (µt, Vt)
T
t=0.

The smoother
is then given as

µs
T = µT ,

V s
T = VT ,

µs
t = µt + Jt(µ

s
t+1 −Atµt),

V s
t = Vt + Jt(V

s
t+1 − Vt)J

⊤
t ,

where

Jt = VtA
⊤
t V̂

−1
t+1.

29

State-space models
The smoothing problem

Assume we have computed filter moments (µt, Vt)
T
t=0. The smoother

is then given as

µs
T = µT ,

V s
T = VT ,

µs
t = µt + Jt(µ

s
t+1 −Atµt),

V s
t = Vt + Jt(V

s
t+1 − Vt)J

⊤
t ,

where

Jt = VtA
⊤
t V̂

−1
t+1.

29

Deterministic approximations are only useful in certain settings where
we can ensure
▶ Exact or approximate linearity
▶ Gaussianity

We will now introduce a general Monte Carlo approach to estimate
posterior distributions πN

t (dxt|y1:t).

Particle filters.

30

Deterministic approximations are only useful in certain settings where
we can ensure
▶ Exact or approximate linearity
▶ Gaussianity

We will now introduce a general Monte Carlo approach to estimate
posterior distributions πN

t (dxt|y1:t).

Particle filters.

30

Deterministic approximations are only useful in certain settings where
we can ensure
▶ Exact or approximate linearity
▶ Gaussianity

We will now introduce a general Monte Carlo approach to estimate
posterior distributions πN

t (dxt|y1:t).

Particle filters.

30

Particle filters

y1 y2 . . .

x1x0 x2 . . . xt

yt

Figure: The conditional independence structure of a state-space model.

(xt)t∈N+ : hidden signal process, (yt)t∈N+ the observation process.

x0 ∼ π0(dx0), (prior distribution)
xt|xt−1 ∼ τt(dxt|xt−1), (transition model)

yt|xt ∼ gt(yt|xt), (likelihood)

xt ∈ X where X is the state-space. We use: gt(xt) = gt(yt|xt).
31

Particle filters

Before we go into the details of the derivation, let us directly look at
the algorithm.

A general algorithm to estimate expectations of any
test function φ(xt) given y1:t.
▶ Sampling: draw

x̄
(i)
t ∼ τt(dxt|x(i)t−1)

independently for every i = 1, . . . , N .
▶ Weighting: compute

w
(i)
t = gt(x̄

(i)
t)/Z̄N

t

for every i = 1, . . . , N , where Z̄N
t =

∑N
i=1 gt(x̄

(i)
t).

▶ Resampling: draw independently,

x
(i)
t ∼ π̃t(dx) :=

∑
i

w
(i)
t δ

x̄
(i)
t
(dx) for i = 1, ..., N.

πN
t−1 →︸︷︷︸

sampling

ξNt →︸︷︷︸
weighting

π̃N
t →︸︷︷︸

resampling

πN
t .

32

Particle filters

Before we go into the details of the derivation, let us directly look at
the algorithm. A general algorithm to estimate expectations of any
test function φ(xt) given y1:t.
▶ Sampling: draw

x̄
(i)
t ∼ τt(dxt|x(i)t−1)

independently for every i = 1, . . . , N .
▶ Weighting: compute

w
(i)
t = gt(x̄

(i)
t)/Z̄N

t

for every i = 1, . . . , N , where Z̄N
t =

∑N
i=1 gt(x̄

(i)
t).

▶ Resampling: draw independently,

x
(i)
t ∼ π̃t(dx) :=

∑
i

w
(i)
t δ

x̄
(i)
t
(dx) for i = 1, ..., N.

πN
t−1 →︸︷︷︸

sampling

ξNt →︸︷︷︸
weighting

π̃N
t →︸︷︷︸

resampling

πN
t .

32

Particle filters
Derivation

Where does the algorithm come from?

Surprisingly, we will not use the prediction-update recursions directly
unlike in the Kalman filter.

We will instead develop an importance sampler on the path space.

33

Particle filters
Derivation

Where does the algorithm come from?

Surprisingly, we will not use the prediction-update recursions directly
unlike in the Kalman filter.

We will instead develop an importance sampler on the path space.

33

Particle filters
Derivation

Where does the algorithm come from?

Surprisingly, we will not use the prediction-update recursions directly
unlike in the Kalman filter.

We will instead develop an importance sampler on the path space.

33

Particle filters
Derivation

The key recursion on the path distributions:

πt(x0:t|y1:t) =
γ(x0:t, y1:t)

p(y1:t)

=
γ(x0:t−1, y1:t−1)

p(y1:t−1)

τ(xt|xt−1)g(yt|xt)
p(yt|y1:t−1)

= πt(x0:t−1|y1:t−1)
τ(xt|xt−1)g(yt|xt)

p(yt|y1:t−1)
.

34

Particle filters
Derivation

Recall importance sampling: Assume that we aim at estimating ex-
pectations of a given density π, i.e., we would like to compute

(φ, π) =

∫
φ(x)π(x)dx.

We also assume that sampling from this density is not possible and
we can only evaluate the unnormalised density γ(x).

35

Particle filters
Derivation

One way to estimate this expectation is to sample from a proposal
measure q and rewrite the integral as

(φ, π) =

∫
φ(x)π(x)dx,

=

∫
φ(x)γ(x)q(x) q(x)dx∫ γ(x)

q(x) q(x)dx
,

≈
1
N

∑N
i=1 φ(x

(i))γ(x
(i))

q(x(i))

1
N

∑N
i=1

γ(x(i))

q(x(i))

, x(i) ∼ q, i = 1, . . . , N.

(10)

36

Particle filters
Derivation

Let us now introduce the unnormalised weight function

W (x) =
γ(x)

q(x)
. (11)

With this, the Eq. (10) becomes

(φ, πN) =
1
N

∑N
i=1 φ(x

(i))W (x(i))
1
N

∑N
i=1W (x(i))

, x(i) ∼ q, i = 1, . . . , N,

=

∑N
i=1 φ(x

(i))W(i)∑N
i=1W

(i)
, x(i) ∼ q, i = 1, . . . , N,

where W(i) = W (x(i)) are called the unnormalised weights.

37

Particle filters
Derivation

Finally, we can obtain the estimator in a more convenient form,

(φ, πN) =

N∑
i=1

w(i)φ(x(i)).

by introducing the normalised importance weights

w(i) =
w(i)∑N
i=1 w

(i)
, (12)

for i = 1, . . . , N . We note that the particle approximation of π in
this case is given as

πN (dx) =

N∑
i=1

w(i)δx(i)(dx). (13)

In the following, we will derive the importance sampler aiming at
building particle approximations of πt(x0:t|y1:t) for a state-space
model.

38

Particle filters
Derivation

The proposal over the entire path space x0:t denoted q(x0:t). Note

γ(x0:t, y1:t) = µ(x0)

t∏
k=1

τ(xk|xk−1)g(yk|xk). (14)

This simply the joint distribution of all variables (x0:t, y1:t). Just as
in the regular importance sampling

W0:t(x0:t) =
γ(x0:t, y1:t)

q(x0:t)
.

Obviously, given samples from the proposal x(i)0:t ∼ q(x0:t), by evalu-
ating the weight W

(i)
0:t = W0:t(x

(i)
0:t) for i = 1, . . . , N and building a

particle approximation

πN (dx0:t) =
N∑
i=1

W
(i)
0:tδx(i)

0:t

(dx0:t).

39

Particle filters
Derivation

The proposal over the entire path space x0:t denoted q(x0:t). Note

γ(x0:t, y1:t) = µ(x0)

t∏
k=1

τ(xk|xk−1)g(yk|xk). (14)

This simply the joint distribution of all variables (x0:t, y1:t). Just as
in the regular importance sampling

W0:t(x0:t) =
γ(x0:t, y1:t)

q(x0:t)
.

Obviously, given samples from the proposal x(i)0:t ∼ q(x0:t), by evalu-
ating the weight W

(i)
0:t = W0:t(x

(i)
0:t) for i = 1, . . . , N and building a

particle approximation

πN (dx0:t) =

N∑
i=1

W
(i)
0:tδx(i)

0:t

(dx0:t).

39

Particle filters
Derivation - sequential approach

Let us consider a decomposition of the proposal

q(x0:t) = q(x0)

t∏
k=1

q(xk|x1:k−1).

Note that, based on this, we can build a recursion for the function
W (x0:t) by writing

W0:t(x0:t) =
γ(x0:t, y1:t)

q(x0:t)
,

=
γ(x0:t−1, y1:t−1)

q(x0:t−1)

τ(xt|xt−1)g(yt|xt)
q(xt|x0:t−1)

,

= W0:t−1(x0:t−1)
τ(xt|xt−1)g(yt|xt)

q(xt|x0:t−1)
,

= W0:t−1(x0:t−1)Wt(x0:t). (15)

40

Particle filters
Derivation - sequential approach

This is still not optimal, as we still need to store the whole path.

We can further simplify our proposal by assuming a Markov structure.

q(x0:t) = q(x0)
t∏

k=1

q(xk|xk−1).

This allows us to obtain purely recursive weight computation

W0:t(x0:t) =
γ(x0:t, y1:t)

q(x0:t)
, (16)

=
γ(x0:t−1, y1:t−1)

q(x0:t−1)

τ(xt|xt−1)g(yt|xt)
q(xt|xt−1)

, (17)

= W0:t−1(x0:t−1)
τ(xt|xt−1)g(yt|xt)

q(xt|xt−1)
, (18)

= W0:t−1(x0:t−1)Wt(xt, xt−1), (19)

41

Particle filters
Derivation - sequential approach

This is still not optimal, as we still need to store the whole path.

We can further simplify our proposal by assuming a Markov structure.

q(x0:t) = q(x0)

t∏
k=1

q(xk|xk−1).

This allows us to obtain purely recursive weight computation

W0:t(x0:t) =
γ(x0:t, y1:t)

q(x0:t)
, (16)

=
γ(x0:t−1, y1:t−1)

q(x0:t−1)

τ(xt|xt−1)g(yt|xt)
q(xt|xt−1)

, (17)

= W0:t−1(x0:t−1)
τ(xt|xt−1)g(yt|xt)

q(xt|xt−1)
, (18)

= W0:t−1(x0:t−1)Wt(xt, xt−1), (19)

41

Particle filters
Sequential Importance Sampling (SIS)

Let us implement it. Assume that we have computed the unnor-
malised weights W

(i)
1:t−1 = W (x

(i)
0:t−1) recursively and obtained sam-

ples x(i)0:t−1. We only need the last sample x
(i)
t−1 to obtain the weight

update given in (19). And also note that W
(i)
1:t−1 for i = 1, . . . , N

are just numbers, they do not need the storage of previous samples.
We can now sample from the Markov proposal x(i)t ∼ q(xt|x(i)t−1) and
compute the weights of the path sampler at time t as

W
(i)
1:t = W

(i)
1:t−1 ×W

(i)
t ,

where

W
(i)
t =

τ(x
(i)
t |x(i)t−1)g(yt|x

(i)
t)

q(x
(i)
t |x(i)t−1)

.

42

Particle filters
Sequential Importance Sampling (SIS)

Given the samples x
(i)
t−1, we first perform sampling step

x
(i)
t ∼ q(xt|xt−1)

and then compute

W
(i)
t =

τ(x
(i)
t |x(i)t−1)g(yt|x

(i)
t)

q(x
(i)
t |x(i)t−1)

.

and update

W
(i)
1:t = W

(i)
1:t−1 ×W

(i)
t .

These are unnormalised weights and we normalise them to obtain,

w
(i)
1:t =

W
(i)
1:t∑N

i=1W
(i)
1:t

,

43

Particle filters
Sequential Importance Sampling (SIS)

which finally leads to the empirical measure,

πN (dx0:t) =
N∑
i=1

w
(i)
1:tδx(i)

0:t

(dx0:t).

44

Particle filters
Sequential Importance Sampling (SIS)

▶ Sample x
(i)
0 ∼ q(x0) for i = 1, . . . , N .

▶ For t ≥ 1
▶ Sample: x

(i)
t ∼ q(xt|x(i)

t−1),
▶ Compute weights:

W
(i)
t =

τ(x
(i)
t |x(i)

t−1)g(yt|x
(i)
t)

q(x
(i)
t |x(i)

t−1)
.

and update

W
(i)
1:t = W

(i)
1:t−1 ×W

(i)
t .

Normalise weights,

w
(i)
1:t =

W
(i)
1:t∑N

i=1 W
(i)
1:t

.

▶ Report

πN
t (dx0:t) =

N∑
i=1

w
(i)
1:tδx(i)

0:t
(dx0:t).

45

Particle filters
Sequential Importance Sampling (SIS)

There is a well-known problem with this scheme: Weight degeneracy.

To resolve this, the approach is to introduce resampling steps.

46

Particle filters
Sequential Importance Sampling (SIS)

There is a well-known problem with this scheme: Weight degeneracy.

To resolve this, the approach is to introduce resampling steps.

46

Particle filters
Sequential Importance Sampling - Resampling (SISR)

▶ Sample x
(i)
0 ∼ q(x0) for i = 1, . . . , N .

▶ For t ≥ 1
▶ Sample: x

(i)
t ∼ q(xt|x(i)

t−1),
▶ Compute weights:

W
(i)
t =

τ(x
(i)
t |x(i)

t−1)g(yt|x
(i)
t)

q(x
(i)
t |x(i)

t−1)
.

Normalise: w
(i)
1:t = W

(i)
1:t/

∑N
i=1 W

(i)
1:t

▶ Report

πN
t (dx0:t) =

N∑
i=1

w
(i)
1:tδx(i)

0:t
(dx0:t).

▶ Resample:

x
(i)
t ∼

N∑
i=1

w
(i)
t δ

x̃
(i)
t
(dxt).

47

Particle filters
Bootstrap Particle filter

The bootstrap particle filter (BPF) is the SISR algorithm with the
following choices:

q(xt|xt−1) = τ(xt|xt−1),

48

Particle filters
Bootstrap particle filter

▶ Sample x
(i)
0 ∼ q(x0) for i = 1, . . . , N .

▶ For t ≥ 1
▶ Sample: x

(i)
t ∼ τ(xt|x(i)

t−1),
▶ Compute weights:

W
(i)
t = g(yt|x(i)

t),

Normalise: w
(i)
1:t = W

(i)
1:t/

∑N
i=1 W

(i)
1:t

▶ Report

πN
t (dx0:t) =

N∑
i=1

w
(i)
1:tδx(i)

0:t
(dx0:t).

▶ Resample:

x
(i)
t ∼

N∑
i=1

w
(i)
t δ

x̃
(i)
t
(dxt).

49

References I

50

