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Recall our basic task:

▶ We want to sample from a distribution π(x) ∝ γ(x) given only
the knowledge of γ(x).

▶ We want to use these samples to estimate an integral

(φ, π) =

∫
φ(x)π(x) dx
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Last week, we have covered the basic sampling techniques:

▶ Uniform random number generation
▶ Linear congruential generators

▶ Inversion (inverse transform) sampling
▶ U ∼ U(0, 1)
▶ X = F−1(U)

▶ Rejection sampling
▶ X ′ ∼ q(x)
▶ Accept X ′ with probability γ(X ′)/Mq(X ′)

▶ Importance sampling
▶ Sample X1, . . . , XN ∼ q(x)
▶ Estimate (φ, π) ≈

∑N
i=1 φ(Xi)wi,

The code is also available for these parts:

https://akyildiz.me/advanced-computational-statistics
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OK, so what is wrong with these methods?

4



The curse of dimensionality
Rejection sampling as d → ∞

Let us exemplify a few issues. Consider the following target distribu-
tion on Rd:

π(x) =
1

σd
π(2π)

d/2
exp

(
− 1

2σ2
π

∥x∥2
)

and the following proposal distribution:

q(x) =
1

σd
q (2π)

d/2
exp

(
− 1

2σ2
q

∥x∥2
)

where σq > σπ.
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The curse of dimensionality
Rejection sampling as d → ∞

We know that the acceptance probability is

α(x) =
π(x)

Mq(x)
.

Mini-quiz: How do we choose M?

M = sup
x∈Rd

π(x)

q(x)
.

Then, we can write

M = = sup
x∈Rd

σq
σπ

exp

(
− 1

2σ2
π

∥x∥2 + 1

2σ2
q

∥x∥2
)

=
σd
q

σd
π

sup
x∈Rd

exp

(
σ2
π − σ2

q

2σ2
qσ

2
π

∥x∥2
)

=
σd
q

σd
π

.
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The curse of dimensionality
Rejection sampling as d → ∞

Mini-quiz: Given M , what is the acceptance rate?

â =
1

M
=

σd
π

σd
q

.

This means that as d → ∞, given σq > σπ, â → 0.

The curse of dimensionality for rejection samplers.

7



The curse of dimensionality
Rejection sampling as d → ∞

Mini-quiz: Given M , what is the acceptance rate?
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The curse of dimensionality
Importance sampling as d → ∞

In standard Monte Carlo methods course, you would hear things like

▶ Monte Carlo estimators are independent of the dimension of the
problem.

▶ Importance sampling estimators are also independent of the di-
mension of the problem.

These are false statements.

Importance sampling estimators also suffer badly as d → ∞ (Li et
al., 2005).
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This motivates us to move on to our next topic: Markov chain Monte
Carlo methods.
▶ In both high-dimensional sampling and more generally genera-

tive modelling, techniques based on MCMC and similar ideas
are the state-of-the-art.

▶ Of course, there are many other techniques that are used in
practice, but MCMC is the most popular one.

Next up: Introducing Markov chains.
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What is a Markov chain?

A discrete-time Markov chain is a sequence of random variables
X0, X1, . . . such that:

▶ Xt depends only on Xt−1

▶ In other words, Xt is conditionally independent of X0, . . . , Xt−2

given Xt−1.
The evolution of the chain is governed by:
▶ A transition matrix M (discrete case)
▶ A transition kernel K (continuous case)

Let us denote our state-space with X.
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What is a Markov chain?
Example 1: Simulate a discrete Markov chain

Consider the transition matrix:

M =

0.6 0.2 0.2
0.3 0.5 0.2
0 0.3 0.7

 , where X = {1, 2, 3}.

1 2

3

0.6
0.2

0.2

0.3

0.5

0.2

0
0.3

0.7
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What is a Markov chain?
Example 1: Simulate a discrete Markov chain – What does the matrix M mean?

M Xt = 1 Xt = 2 Xt = 3

Xt−1 = 1 0.6 0.2 0.2
Xt−1 = 2 0.3 0.5 0.2
Xt−1 = 3 0 0.3 0.7

Example: Given X0 = 1, how to simulate this chain?

Sample:

Xt|Xt = xt−1 ∼ Discrete(Mxt−1,·).

Simulation!
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What is a Markov chain?
The discrete case: The evolution of the density of the chain

Let p0(i) = P(X0 = i) for i ∈ X.

Then, the density of the chain at
time n is given by:

pn(i) = P(Xn = i)

=
∑
k

P(Xn = i,Xn−1 = k)

=
∑
k

P(Xn = i|Xn−1 = k)P(Xn−1 = k)

=
∑
k

Mkipn−1(k).

This implies that

pn = pn−1M.

Therefore,

pn = p0M
n.
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Properties of Markov chains
What do we need?

We need Markov chains

▶ With invariant distributions
▶ Their convergence is ensured
▶ Their invariant distribution is unique

We will now review the properties which ensure these in discrete
space case.
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Properties of Markov chains
Irreducibility

For two states, x, x′ ∈ X, we write x⇝ x′ if there is a path from x
to x′:

∃n > 0, s.t. ,P(Xn = x′|X0 = x) > 0.

If x⇝ x′ and x′ ⇝ x, then we say that x and x′ communicate.

A communication class C ⊂ X is a set of states such that x ∈ C
and x′ ∈ C if and only if x⇝ x′ and x′ ⇝ x.

A chain is irreducible if X is a single communication class.
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Properties of Markov chains
Recurrence and transience

A Markov chain is recurrent if every state is to be visited infinitely
often.

Define the return time:

τi = inf{n ≥ 0 : Xn = i}.

We say that the state is recurrent if

P(τi < ∞|X1 = i) = 1.

If a state is not recurrent, it is transient.
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Properties of Markov chains
Positive and null recurrence

We say that a state i is positively recurrent if

E[τi|X1 = i] < ∞.

If a recurrent state is not positive recurrent, it is null recurrent.
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Properties of Markov chains
Invariant distribution

A probability mass function π is called M -invariant if

π(i) =
∑
j

Mijπ(j).

Equivalently

π = πM.
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Properties of Markov chains
Existence and uniqueness of the invariant distribution

Theorem 1
If M is irreducible, then M has a unique invariant distribution if and
only if it is positive recurrent.

This is existence, we do not talk about convergence yet.
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Properties of Markov chains
Reversibility and detailed balance

We will define reversibility through detailed balance condition.

A Markov transition matrix M is reversible w.r.t. π if and only if for
all i, j ∈ X,

π(i)Mij = π(j)Mji.

This is called the detailed balance condition (we will discuss the
continuous version)

Constructing a chain with stationary distribution π is ensured if de-
tailed balance is satisfied since it implies π = πM .
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Properties of Markov chains
Ergodicity

We have seen how to construct chains with invariant distributions π.

However, the convergence of the chain pn → π requires one more
ingredient: ergodicity.

For this, we need a final ingredient: aperiodicity.
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Properties of Markov chains
Aperiodicity

A state i is called aperiodic if

{n > 0 : P(Xn+1 = i|X1 = i) > 0}

has no common divisor other than 1.
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Properties of Markov chains
Ergodicity

Definition 2
An irreducible Markov chain is called ergodic if it is positive recurrent
and aperiodic.

Ergodicity brings us the missing ingredient for the convergence: We
can now ensure pn to converge to π.
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Properties of Markov chains
Ergodicity

If (Xn)n∈N is an ergodic Markov chain with any initial p0 and a
Markov transition matrix M with π as its invariant distribution, then

lim
n→∞

pn(i) = π(i).

Moreover, for i, j ∈ X

lim
n→∞

P(Xn = i|X1 = j) = π(i).
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Properties of Markov chains

What about continuous state-space Markov chains, i.e., where X is
uncountable, e.g., X = R?

We will be mainly interested in the continuous case, however, the
analogous concepts are defined in a much more complicated way.

We will not go into the details here, we will just now introduce the
continuous state-space notation.
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What is a Markov chain?
The continuous case case

We assume now our state-space is uncountable, e.g., X = R.

We denote the initial density of the chain by p0(x).

The transition kernel is denoted K(xn|xn−1).

The density of the chain at time n is denoted by pn(xn).
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What is a Markov chain?
The continuous case

A discrete-time Markov chain is a process (Xn)n∈N, when X is un-
countable, satisfies:

p(xn|x1:n−1) = p(xn|xn−1) = K(xn|xn−1).

X0 X1 X2 · · · Xn
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What is a Markov chain?
The continuous case

We will again consider the time-homogeneous case, i.e. the transition
kernel is time-independent.

A Markov chain therefore can be defined
entirely by its:
▶ Initial state (or initial distribution)
▶ Transition kernel

28



What is a Markov chain?
The continuous case

We will again consider the time-homogeneous case, i.e. the transition
kernel is time-independent. A Markov chain therefore can be defined
entirely by its:
▶ Initial state (or initial distribution)
▶ Transition kernel

28



What is a Markov chain?
The continuous case

The transition kernel is a density function K(xn|xn−1) for fixed xn−1,
i.e., ∫

X
K(xn|xn−1) dxn = 1.

Otherwise, it is a function of (xn, xn−1).
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What is a Markov chain?
Example 1: Simulate a continuous-state Markov chain

Consider the following Markov chain: X0 = 0 and

K(xn|xn−1) = N (xn; axn−1, 1),

where 0 < a < 1.

We can simulate this chain by:

X1 ∼ N (0, 1)

X2 ∼ N (aX1, 1)

X3 ∼ N (aX2, 1)

...
Xn ∼ N (aXn−1, 1).

Simulation.
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What is a Markov chain?
The continuous case: Chapman-Kolmogorov equations

The Chapman-Kolmogorov equation for the continuous case

p(xn|xn−k) =

∫
X
K(xn|xn−1)p(xn−1|xn−k) dxn−1,

for k > 1.
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What is a Markov chain?
The continuous case: The evolution of the density of the chain

Let p0(x) be the initial density such that X0 ∼ p0(x).

Then, the density of the chain at time n is given by

pn(xn) =

∫
X
K(xn|xn−1)pn−1(xn−1) dxn−1.
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What is a Markov chain?
The continuous case: m-step transition kernel

It is useful for us to define the m-step transition kernel:

p(xm+n|xn) = Km(xm+n|xn),

=

∫
X
K(xm+n|xm+n−1) · · ·K(xn+1|xn) dxm+n−1 · · · dxn+1.
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What is a Markov chain?
Properties

We have the similar conditions of aperiodicity and irreducibility as in
the discrete case, but,
▶ These are defined over sets rather than states.
▶ irreducibility is replaced by ϕ-irreducibility.
▶ aperiodicity is defined for sets

We will not go into the details of these conditions for continuous
space case.
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What is a Markov chain?
Invariant distribution

A probability distribution π is called K-invariant if

π(x) =

∫
X
π(x′)K(x|x′) dx′.

Similar to the discrete case.
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What is a Markov chain?
Detailed balance and reversibility

The detailed balance condition for the continuous case takes a similar
form:

π(x)K(x′|x) = π(x′)K(x|x′).

Note that this is a sufficient condition for stationarity of π:∫
π(x)K(x′|x)dy =

∫
π(x′)K(x|x′)dx′,

=⇒ π(x) =

∫
K(x|x′)π(x′)dx′,

which implies π is K-invariant.
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What is a Markov chain?
Example: Go back to Gaussian model

Consider the following Markov chain: X0 = 0 and

K(xn|xn−1) = N (xn; axn−1, 1),

where 0 < a < 1.

Note that we can also write this as

Xn = aXn−1 + ϵn,

where ϵn ∼ N (0, 1).
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What is a Markov chain?
Example: Go back to Gaussian model

Prove that for

π(x) = N
(
x; 0,

1

1− a2

)
,

the detailed balance condition is satisfied for the kernel

K(xn|xn−1) = N (xn; axn−1, 1),

where 0 < a < 1.

38



What is a Markov chain?
Example: Go back to Gaussian model

Prove that Km(xm+n|xn) is given by

Km(xm+n|xn) = N
(
xm+n; a

mxn,
1− a2m

1− a2

)
.

Then prove that

π(x) = lim
m→∞

Km(x|x′),

independent of x′.
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Why Markov chains?
Since we want i.i.d samples

Theorem 3
If K is an irreducible, π-invariant kernel, then for any integrable
function φ

lim
T→∞

1

T

T∑
i=1

φ(Xi) =

∫
φ(x)π(x)dx = (φ, π),

almost surely, for almost all initial points x0.

Therefore, we can use these samples to estimate our integrals.
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Why Markov chains?
Since we want i.i.d samples

Theorem 4
If K is irreducible, aperiodic, and π-invariant, then

lim
T→∞

∫
X
|KT (y|x)− π(y)|dy = 0,

for π-almost all starting values x.
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Markov chain Monte Carlo
How to design good kernels?

We will first look at a surprisingly simple approach: the Metropolis-
Hastings algorithm.

This approach relies on the following idea:
▶ We can sample from a proposal q(x|x′) (that is a Markov kernel)
▶ We can use accept/reject

We can design the process so that the stationary distribution of the
chain is the target distribution.

This is however very different from the rejection sampling approach.
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Metropolis-Hastings

Consider the following method:
▶ Sample X ′ ∼ q(x′|Xn−1)

▶ Set Xn = X ′ with probability

α(X ′|Xn−1) = min

{
1,

π(X ′)q(Xn−1|X ′)

π(Xn−1)q(X ′|Xn−1)

}
.

▶ Otherwise, set Xn = Xn−1.

Note the last step: we discard the sample X ′ if rejected BUT set
Xn = Xn−1.
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Metropolis-Hastings
Metropolis-Hastings Algorithm

The ratio

r(x, x′) =
π(x′)q(x|x′)
π(x)q(x′|x)

,

is called acceptance ratio.
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Metropolis-Hastings
Metropolis-Hastings Algorithm

We have discussed explicit kernels in the discrete and continuous
cases.

But the MH algorithm automatically gives us a kernel.

How to prove that the stationary distribution is the target distribu-
tion?
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Metropolis-Hastings
Metropolis-Hastings Algorithm

Let us figure out the kernel.

Let us say, we have the sample from the proposal x′. Fixing this
sample, the acceptance step samples from the mixture

α(x′|x)δx′(dy) + (1− α(x′|x))δx(dy).

To get the full kernel, we need to integrate over x′:

K(y|x) =
∫

q(x′|x)
(
α(x′|x)δx′(y) + (1− α(x′|x))δx(y)

)
dx′,

= α(y|x)q(y|x) + (1− a(x))δx(y)

where

a(x) =

∫
α(x′|x)q(x′|x)dx′.
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Metropolis-Hastings
Metropolis-Hastings Algorithm
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Metropolis-Hastings
Metropolis-Hastings Algorithm

More intuition in terms of xn and xn−1:
▶ What is the probability of being at xn−1 and getting accepted?

a(xn−1) =

∫
X
α(x|xn−1)q(x|xn−1)dx.

▶ Therefore, the probability of being at xn−1 and getting rejected
is 1− a(xn−1).

We can see that the kernel is

K(xn|xn−1) = α(xn|xn−1)q(xn|xn−1) + (1− a(xn−1))δxn−1(xn).
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Metropolis-Hastings
Metropolis-Hastings Algorithm: Detailed Balance

We can now prove that the kernel satisfies the detailed balance con-
dition:

K(x′|x)π(x) = K(x|x′)π(x′).
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Metropolis-Hastings
Metropolis-Hastings Algorithm: Detailed Balance

π(x)K(x′|x) = π(x)q(x′|x)α(x′, x) + π(x)(1− a(x))δx(x
′)

= π(x)q(x′|x)min

{
1,

π(x′)q(x|x′)
π(x)q(x′|x)

}
+ π(x)(1− a(x))δx(x

′)

= min
{
π(x)q(x′|x), π(x′)q(x|x′)

}
+ π(x)(1− a(x))δx(x

′)

= min

{
π(x)q(x′|x)
π(x′)q(x|x′)

, 1

}
π(x′)q(x|x′) + π(x′)(1− a(x′))δx′(x)

= K(x|x′)π(x′).
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Metropolis-Hastings
Unnormalised density

Assume we are given an unnormalised density to sample γ where

π(x) =
γ(x)

Z
,

where Z is the normalisation constant.
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Metropolis-Hastings
Unnormalised density

▶ Sample X ′ ∼ q(x′|Xn−1)

▶ Set Xn = X ′ with probability

α(X ′|Xn−1) = min

{
1,

γ(X ′)q(Xn−1|X ′)

γ(Xn−1)q(X ′|Xn−1)

}
.

▶ Otherwise, set Xn = Xn−1.
as the normalising constants of π would cancel out.
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Metropolis-Hastings
How do we choose proposals?

▶ Independent proposals
▶ Symmetric (random walk) proposals
▶ Gradient-based proposals
▶ Adaptive proposals
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Metropolis-Hastings
Independent proposals

Choose the proposal q(x) independently of the current state Xn−1.
Leads to
▶ X ′ ∼ q(x′)

▶ Accept with probability

α(X ′|Xn−1) = min

{
1,

π(X ′)q(Xn−1)

π(Xn−1)q(X ′)

}
.

▶ Otherwise, set Xn = Xn−1.
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Metropolis-Hastings
Independent proposals

Let us say

π(x) = N (x;µ, σ2)

For the example, assume we want to use MH to sample from it.
Choose a proposal

q(x) = N (x;µq, σ
2
q ).

How to compute the acceptance ratio?
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Metropolis-Hastings
Independent proposals

r(x, x′) =
π(x′)q(x)

π(x)q(x′)

=
N (x′;µ, σ2)N (x;µq, σ

2
q )

N (x;µ, σ2)N (x′;µq, σ2
q )

=

1√
2πσ2

exp
(
− (x′−µ)2

2σ2

)
1√
2πσ2

q

exp
(
− (x−µq)2

2σ2
q

)
1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
1√
2πσ2

q

exp
(
− (x′−µq)2

2σ2
q

)
=

exp
(
− (x′−µ)2

2σ2

)
exp

(
− (x−µq)2

2σ2
q

)
exp

(
− (x−µ)2

2σ2

)
exp

(
− (x′−µq)2

2σ2
q

)
= e

(
− 1

2σ2 [(x′−µ)2−(x−µ)2]
)
e

(
− 1

2σ2
q
[(x−µq)2−(x′−µq)2]

)

Simulation.
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Metropolis-Hastings
Random walk proposal

We can choose:

q(x′|x) = N (x′;x, σ2
q )

The proposal looks at where we are and take a random step (random
walk).

Note that q(x′|x) is symmetric, i.e. q(x|x′) = q(x′|x).
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Metropolis-Hastings
Random walk proposal

Acceptance ratio:

r(x, x′) =
π(x′)q(x|x′)
π(x)q(x′|x)

=
π(x′)

π(x)
,

=
N (x′;µ, σ2)

N (x;µ, σ2)

= e

(
− 1

2σ2 [(x′−µ)2−(x−µ)2]
)
.

Simulation.
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Metropolis-Hastings
Random walk proposal

Set a burnin period:
▶ Run the sampler for fixed number of iterations and discard the

first n samples.
▶ This accounts for the convergence to the stationary measure.
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Metropolis-Hastings
Gradient-based proposal

We can inform the proposal by using the gradient of the target dis-
tribution.

q(x′|x) = N (x′;x+ γ∇ log π(x), 2γI),

This tends to behave really well.

This approach is called Metropolis adjusted Langevin algorithm (MALA).
(more on these later)
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Metropolis-Hastings
Caveats, design rules

▶ One has to be careful that p/q < ∞ (while no theoretical reason,
the performance tends to be quite bad).

▶ The proposal should attain a balance of acceptance rate and
efficiency.

▶ Too high acceptance rate is not necessarily good: You might
be taking too small steps and getting stuck in some regions
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Metropolis-Hastings
Bayesian inference with MH

Let us look at now the Bayesian inference problem.

We can solve it in full generality (in theory) using MH.

Recall the general formulation

p(x|y1:n) =
p(y1:n|x)p(x)

p(y1:n)
=

∏n
i=1 p(yi|x)p(x)

p(y1:n)
,

when y1, . . . , yn are conditionally independent given x.
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Metropolis-Hastings
Bayesian inference with MH

We write

p(x|y1:n) ∝
n∏

i=1

p(yi|x)p(x),

and set

γ(x) =

n∏
i=1

p(yi|x)p(x),

as our unnormalised posterior.
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Metropolis-Hastings
Bayesian inference with MH

The generic MH for Bayesian inference, given xn−1

▶ Sample X ′ ∼ q(x′|xn−1).
▶ Accept xn = x′ with probability

α(xn−1, x
′) = min

{
1,

γ(x′)q(xn−1|x′)
γ(xn−1)q(x′|xn−1)

}
.

▶ Otherwise, Xn = xn−1.
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Metropolis-Hastings
Example: Source localisation

Recall our example about localising a source using observations from
a sensor network.

We can now formalise this problem. Assume that the source is lo-
cated at x ∈ R2 and the sensor network is located at s1, . . . , s3 ∈ R2

(3 sensors).

Assume that these three sensors ”observe” the source according to:

p(yi|x, si) = N (yi; ∥x− si∥, R),

where yi is the observation from sensor i.
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Metropolis-Hastings
Example: Source localisation
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Figure: Source localisation
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Metropolis-Hastings
Example: Source localisation

Assume that you are asked to estimate the location of the source
given the observations y1, y2, y3. What is the model?

We first need a prior on the source location:

p(x) = N (x;µ,Σ),

where µ is the prior mean and Σ is the prior covariance. We already
have the likelihoods for each yi.
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Metropolis-Hastings
Example: Source localisation

The posterior is given by

p(x|y1, y2, y3, s1, s2, s3) ∝ p(x)

3∏
i=1

p(yi|x, si).
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Metropolis-Hastings
Example: Source localisation

We choose a random walk proposal:

q(x′|x) = N (x′;x, σ2I).

This is symmetric so the acceptance ratio is:

r(x, x′) =
p(x′)p(y1|x′, s1)p(y2|x′, s2)p(y3|x′, s3)
p(x)p(y1|x, s1)p(y2|x, s2)p(y3|x, s3)

.
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Metropolis-Hastings
The banana density

Consider the 2D density

p(x, y) ∝ exp

(
−x2

10
− y4

10
− 2(y − x2)2

)
.

Assume we would like to sample from it.
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Metropolis-Hastings
The banana density
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Figure: The banana density (unnormalised)
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Metropolis-Hastings
The banana density

We have

γ(x, y) = exp

(
−x2

10
− y4

10
− 2(y − x2)2

)
.

and let us choose two alternative proposals
▶ The random walk proposal:

q(x′, y′|x, y) = N (x′;x, σ2
q )N (y′; y, σ2

q ).

▶ and the gradient-based proposal (MALA):

q(x′, y′|x, y) = N (z; z + γ∇ log γ(z),
√
2γI).

where z = (x, y) and γ is a step size.
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We have seen Metropolis-Hastings sampler.

▶ Unfortunately, it may not be very efficient.
▶ Acceptance ratios are very tricky to compute in a variety of

settings:
▶ High-dimensional problems
▶ Complex models
▶ Large datasets

▶ We will now look at a different approach: Langevin MCMC.
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Langevin-based approaches
Crash course on Langevin SDE - I

Consider the Langevin SDE for a generic drift ∇V :

dXt = −∇V (Xt)dt+
√
2dBt,

where (Bt)t≥0 is a Brownian motion.

This SDE has a stationary
measure

π ∝ e−V (x).

Therefore, for a classical sampling problem for, say π(x), we could
set V (x) = − log π(x) (negative density).

This diffusion converges to its stationary measure exponentially fast
if V is µ-strongly-convex.
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Langevin-based approaches
Crash course on Langevin SDE - II – Optimisation

Consider the Langevin SDE for a generic drift ∇V :

dXt = −∇V (Xt)dt+

√
2

β
dBt,

where (Bt)t≥0 is a Brownian motion.

This SDE has a stationary
measure

π ∝ e−βV (x).

This stationary measure concentrates on the minima of V as β → ∞
(Hwang, 1980).

Langevin diffusion is a global optimiser.
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Langevin-based approaches
Crash course on Langevin SDE - III: Numerical discretisation

The Euler discretisation is the unadjusted Langevin algorithm (ULA):

Xγ
t+1 = Xγ

t − γ∇V (Xγ
t ) +

√
2γWt+1

where (Wt)t≥0 are i.i.d standard Normal random variables.

This chain has a different stationary measure πγ but a number of
guarantees can be derived for its convergence.

Theorem 1 (Durmus and Moulines, 2019)

Let L(Xt) be the law of the iterates of ULA, then

W 2
2 (L(X

γ
t ), π) ≲

(
1− γκ

2

)t+1
(d/m+ ∥x− x⋆∥2) + γ,

under suitable regularity conditions for V , restriction on γ where
κ := κ(m,L).

75



Langevin-based approaches
Crash course on Langevin SDE - III: Numerical discretisation

The Euler discretisation is the unadjusted Langevin algorithm (ULA):

Xγ
t+1 = Xγ

t − γ∇V (Xγ
t ) +

√
2γWt+1

where (Wt)t≥0 are i.i.d standard Normal random variables.

This chain has a different stationary measure πγ but a number of
guarantees can be derived for its convergence.

Theorem 1 (Durmus and Moulines, 2019)

Let L(Xt) be the law of the iterates of ULA, then

W 2
2 (L(X

γ
t ), π) ≲

(
1− γκ

2

)t+1
(d/m+ ∥x− x⋆∥2) + γ,

under suitable regularity conditions for V , restriction on γ where
κ := κ(m,L).

75



Langevin-based approaches
ULA for Bayesian inference

An important note here is that, we can sample from the posterior
p(x|y) using ULA as

p(x|y) ∝ p(x, y),

and

Xγ
n+1 = Xγ

n + γ∇ log p(Xγ
n , y) +

√
2γWn+1.

We can see that this algorithm would approximately sample from
p(x|y).
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Langevin-based approaches
ULA for Bayesian inference

Let us say we have data y1, . . . , yM for M large. We can write the
posterior as

p(x|y1:M ) ∝ p(x)

M∏
i=1

p(yi|x).

therefore, our potential becomes

V (x) = − log p(x)−
M∑
i=1

log p(yi|x).

Mini-quiz: What is the problem with MALA (or MH in general) in
this case?
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Langevin-based approaches
ULA for Bayesian inference

A similar problem of course would be for ULA.

However, we can resolve this, as we can approximate the gradient
using subsampling:

∇V (x) = ∇ log p(x) +
M∑
i=1

∇ log p(yi|x),

≈ ∇ log p(x) +
M

m

m∑
j=1

∇ log p(ykj |x) = ∇̂V (x),

where kj ∼ Unif{1, . . . ,M}, for j = 1, . . . ,m for m ≪ M .

Stochastic gradients.
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Langevin-based approaches
ULA for Bayesian inference

One can run ULA with stochastic gradients:

Xγ
n+1 = Xγ

n − γ ̂∇V (Xγ
n) +

√
2γWn+1.

The resulting method is called stochastic gradient Langevin dynamics
(SGLD) (Welling and Teh, 2011).
▶ Widely used for large-scale datasets.
▶ It has similar guarantees to ULA in Wasserstein-2 distance for

strongly convex V .
▶ Also used to model and analyse the behaviour of stochastic

gradient descent methods (SGD) in deep learning.
Web based simulations if time permits.
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