
Advanced Computational Methods in Statistics
Lecture 2

O. Deniz Akyildiz

LTCC Advanced Course

October 14, 2024

https://akyildiz.me/

X: @odakyildiz



Recall our basic task:

I Wewant to sample from a distribution π(x) ∝ γ(x) given only the
knowledge of γ(x).

I We want to use these samples to estimate an integral

(ϕ, π) =

∫
ϕ(x)π(x) dx
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Last week, we have covered the basic sampling techniques:

I Uniform random number generation
I Linear congruential generators

I Inversion (inverse transform) sampling
I U ∼ U(0, 1)
I X = F−1(U)

I Rejection sampling
I X′ ∼ q(x)
I Accept X′ with probability γ(X′)/Mq(X′)

I Importance sampling
I Sample X1, . . . ,XN ∼ q(x)
I Estimate (ϕ, π) ≈

∑N
i=1 ϕ(Xi)wi,

The code is also available for these parts:

https://akyildiz.me/advanced-computational-statistics
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OK, so what is wrong with these methods?

4



The curse of dimensionality
Rejection sampling as d → ∞

Let us exemplify a few issues. Consider the following target distribution
on Rd :

π(x) =
1

σd
π(2π)

d/2 exp
(
− 1

2σ2
π

‖x‖2
)

and the following proposal distribution:

q(x) =
1

σd
q (2π)

d/2 exp

(
− 1

2σ2
q
‖x‖2

)

where σq > σπ .
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The curse of dimensionality
Rejection sampling as d → ∞

We know that the acceptance probability is

α(x) =
π(x)
Mq(x)

.

Mini-quiz: How do we choose M?

M = sup
x∈Rd

π(x)
q(x)

.

Then, we can write

M = sup
x∈Rd

σq

σπ
exp

(
− 1

2σ2
π

‖x‖2 + 1

2σ2
q
‖x‖2

)

=
σd
q

σd
π

sup
x∈Rd

exp

(
σ2
π − σ2

q

2σ2
qσ

2
π

‖x‖2
)

=
σd
q

σd
π

.
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The curse of dimensionality
Rejection sampling as d → ∞

Mini-quiz: Given M, what is the acceptance rate?

â =
1

M
=

σd
π

σd
q
.

This means that as d → ∞, given σq > σπ , â → 0.

The curse of dimensionality for rejection samplers.
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The curse of dimensionality
Importance sampling as d → ∞

In standard Monte Carlo methods course, you would hear things like

I Monte Carlo estimators are independent of the dimension of the
problem.

I Importance sampling estimators are also independent of the di-
mension of the problem.

These are false statements.

Importance sampling estimators also suffer badly as d → ∞ (Li et al.,
2005).
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This motivates us to move on to our next topic: Markov chain Monte
Carlo methods.
I In both high-dimensional sampling andmore generally generative

modelling, techniques based on MCMC and similar ideas are the
state-of-the-art.

I Of course, there are many other techniques that are used in prac-
tice, but MCMC is the most popular one.

Next up: Introducing Markov chains.
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What is a Markov chain?

Adiscrete-timeMarkov chain is a sequence of randomvariablesX0,X1, . . .
such that:

I Xt depends only on Xt−1

I In other words, Xt is conditionally independent of X0, . . . ,Xt−2

given Xt−1.
The evolution of the chain is governed by:
I A transition matrix M (discrete case)
I A transition kernel K (continuous case)

Let us denote our state-space with X.
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What is a Markov chain?
Example 1: Simulate a discrete Markov chain

Consider the transition matrix:

M =

0.6 0.2 0.2
0.3 0.5 0.2
0 0.3 0.7

 , where X = {1, 2, 3}.

1 2

3

0.6
0.2

0.2

0.3

0.5

0.2

0
0.3

0.7
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What is a Markov chain?
Example 1: Simulate a discrete Markov chain – What does the matrix M mean?

M Xt = 1 Xt = 2 Xt = 3

Xt−1 = 1 0.6 0.2 0.2
Xt−1 = 2 0.3 0.5 0.2
Xt−1 = 3 0 0.3 0.7

Example: Given X0 = 1, how to simulate this chain?

Sample:

Xt|Xt = xt−1 ∼ Discrete(Mxt−1,·).

Simulation!
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What is a Markov chain?
The discrete case: The evolution of the density of the chain

Let p0(i) = P(X0 = i) for i ∈ X.

Then, the density of the chain at time
n is given by:

pn(i) = P(Xn = i)

=
∑
k

P(Xn = i,Xn−1 = k)

=
∑
k

P(Xn = i|Xn−1 = k)P(Xn−1 = k)

=
∑
k

Mkipn−1(k).

This implies that

pn = pn−1M.

Therefore,

pn = p0Mn.
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Properties of Markov chains
What do we need?

We need Markov chains

I With invariant distributions
I Their convergence is ensured
I Their invariant distribution is unique

We will now review the properties which ensure these in discrete space
case.
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Properties of Markov chains
Irreducibility

For two states, x, x′ ∈ X, we write x  x′ if there is a path from x to x′:

∃n > 0, s.t. ,P(Xn = x′|X0 = x) > 0.

If x  x′ and x′  x, then we say that x and x′ communicate.

A communication class C ⊂ X is a set of states such that x ∈ C and
x′ ∈ C if and only if x  x′ and x′  x.

A chain is irreducible if X is a single communication class.
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Properties of Markov chains
Recurrence and transience

AMarkov chain is recurrent if every state is to be visited infinitely often.

Define the return time:

τi = inf{n ≥ 0 : Xn = i}.

We say that the state is recurrent if

P(τi < ∞|X1 = i) = 1.

If a state is not recurrent, it is transient.
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Properties of Markov chains
Positive and null recurrence

We say that a state i is positively recurrent if

E[τi|X1 = i] < ∞.

If a recurrent state is not positive recurrent, it is null recurrent.
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Properties of Markov chains
Invariant distribution

A probability mass function π is called M-invariant if

π(i) =
∑
j

Mijπ(j).

Equivalently

π = πM.
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Properties of Markov chains
Existence and uniqueness of the invariant distribution

Theorem 1
If M is irreducible, thenM has a unique invariant distribution if and only
if it is positive recurrent.

This is existence, we do not talk about convergence yet.
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Properties of Markov chains
Reversibility and detailed balance

We will define reversibility through detailed balance condition.

A Markov transition matrix M is reversible w.r.t. π if and only if for all
i, j ∈ X,

π(i)Mij = π(j)Mji.

This is called the detailed balance condition (we will discuss the contin-
uous version)

Constructing a chain with stationary distribution π is ensured if de-
tailed balance is satisfied since it implies π = πM.
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Properties of Markov chains
Ergodicity

We have seen how to construct chains with invariant distributions π.

However, the convergence of the chain pn → π requires one more in-
gredient: ergodicity.

For this, we need a final ingredient: aperiodicity.
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Properties of Markov chains
Aperiodicity

A state i is called aperiodic if

{n > 0 : P(Xn+1 = i|X1 = i) > 0}

has no common divisor other than 1.
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Properties of Markov chains
Ergodicity

Definition 2
An irreducible Markov chain is called ergodic if it is positive recurrent
and aperiodic.

Ergodicity brings us the missing ingredient for the convergence: We
can now ensure pn to converge to π.
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Properties of Markov chains
Ergodicity

If (Xn)n∈N is an ergodic Markov chain with any initial p0 and a Markov
transition matrix M with π as its invariant distribution, then

lim
n→∞

pn(i) = π(i).

Moreover, for i, j ∈ X

lim
n→∞

P(Xn = i|X1 = j) = π(i).
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Properties of Markov chains

What about continuous state-space Markov chains, i.e., where X is un-
countable, e.g., X = R?

We will be mainly interested in the continuous case, however, the anal-
ogous concepts are defined in a much more complicated way.

We will not go into the details here, we will just now introduce the con-
tinuous state-space notation.
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What is a Markov chain?
The continuous case case

We assume now our state-space is uncountable, e.g., X = R.

We denote the initial density of the chain by p0(x).

The transition kernel is denoted K(xn|xn−1).

The density of the chain at time n is denoted by pn(xn).
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The continuous case

Adiscrete-timeMarkov chain is a process (Xn)n∈N, when X is uncount-
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What is a Markov chain?
The continuous case

We will again consider the time-homogeneous case, i.e. the transition
kernel is time-independent.

A Markov chain therefore can be defined
entirely by its:
I Initial state (or initial distribution)
I Transition kernel

28



What is a Markov chain?
The continuous case

We will again consider the time-homogeneous case, i.e. the transition
kernel is time-independent. A Markov chain therefore can be defined
entirely by its:
I Initial state (or initial distribution)
I Transition kernel

28



What is a Markov chain?
The continuous case

The transition kernel is a density function K(xn|xn−1) for fixed xn−1,
i.e., ∫

X
K(xn|xn−1) dxn = 1.

Otherwise, it is a function of (xn, xn−1).
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What is a Markov chain?
Example 1: Simulate a continuous-state Markov chain

Consider the following Markov chain: X0 = 0 and

K(xn|xn−1) = N (xn; axn−1, 1),

where 0 < a < 1.

We can simulate this chain by:

X1 ∼ N (0, 1)

X2 ∼ N (aX1, 1)

X3 ∼ N (aX2, 1)

...
Xn ∼ N (aXn−1, 1).

Simulation.
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What is a Markov chain?
The continuous case: Chapman-Kolmogorov equations

The Chapman-Kolmogorov equation for the continuous case

p(xn|xn−k) =

∫
X
K(xn|xn−1)p(xn−1|xn−k) dxn−1,

for k > 1.
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What is a Markov chain?
The continuous case: The evolution of the density of the chain

Let p0(x) be the initial density such that X0 ∼ p0(x).

Then, the density of the chain at time n is given by

pn(xn) =
∫

X
K(xn|xn−1)pn−1(xn−1) dxn−1.
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What is a Markov chain?
The continuous case: m-step transition kernel

It is useful for us to define the m-step transition kernel:

p(xm+n|xn) = Km(xm+n|xn),

=

∫
X
K(xm+n|xm+n−1) · · ·K(xn+1|xn) dxm+n−1 · · · dxn+1.
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What is a Markov chain?
Properties

We have the similar conditions of aperiodicity and irreducibility as in
the discrete case, but,
I These are defined over sets rather than states.
I irreducibility is replaced by φ-irreducibility.
I aperiodicity is defined for sets

We will not go into the details of these conditions for continuous space
case.
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What is a Markov chain?
Invariant distribution

A probability distribution π is called K-invariant if

π(x) =
∫

X
π(x′)K(x|x′) dx′.

Similar to the discrete case.
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What is a Markov chain?
Detailed balance and reversibility

The detailed balance condition for the continuous case takes a similar
form:

π(x)K(x′|x) = π(x′)K(x|x′).

Note that this is a sufficient condition for stationarity of π:∫
π(x)K(x′|x)dy =

∫
π(x′)K(x|x′)dx′,

=⇒ π(x) =
∫

K(x|x′)π(x′)dx′,

which implies π is K-invariant.
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What is a Markov chain?
Detailed balance and reversibility

A useful formulation of reversibility is the following: A Markov kernel
K is π-reversible if∫ ∫

f (x, x′)π(x)K(x|x′)dxdx′ =
∫ ∫

f (x, x′)π(x′)K(x′|x)dxdx′,

for every measurable f , which follows from the detailed balance condi-
tion.
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What is a Markov chain?
Example: Go back to Gaussian model

Consider the following Markov chain: X0 = 0 and

K(xn|xn−1) = N (xn; axn−1, 1),

where 0 < a < 1.

Note that we can also write this as

Xn = aXn−1 + εn,

where εn ∼ N (0, 1).
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What is a Markov chain?
Example: Go back to Gaussian model

Prove that for

π(x) = N
(
x; 0,

1

1− a2

)
,

the detailed balance condition is satisfied for the kernel

K(xn|xn−1) = N (xn; axn−1, 1),

where 0 < a < 1.
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What is a Markov chain?
Example: Go back to Gaussian model

Prove that Km(xm+n|xn) is given by

Km(xm+n|xn) = N
(
xm+n; amxn,

1− a2m

1− a2

)
.

Then prove that

π(x) = lim
m→∞

Km(x|x′),

independent of x′.
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Why Markov chains?
Since we want i.i.d samples

Theorem 3
If K is an irreducible, π-invariant kernel, then for any integrable function
ϕ

lim
T→∞

1

T

T∑
i=1

ϕ(Xi) =

∫
ϕ(x)π(x)dx = (ϕ, π),

almost surely, for almost all initial points x0.

Therefore, we can use these samples to estimate our integrals.
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Why Markov chains?
Since we want i.i.d samples

Theorem 4
If K is irreducible, aperiodic, and π-invariant, then

lim
T→∞

∫
X
|KT(y|x)− π(y)|dy = 0,

for π-almost all starting values x.
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Markov chain Monte Carlo
How to design good kernels?

We will first look at a surprisingly simple approach: the Metropolis-
Hastings algorithm.

This approach relies on the following idea:
I We can sample from a proposal q(x|x′) (that is a Markov kernel)
I We can use accept/reject

We can design the process so that the stationary distribution of the
chain is the target distribution.

This is however very different from the rejection sampling approach.
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Metropolis-Hastings
A first look

Consider the following method:
I Sample X′ ∼ q(x′|Xn−1)

I Set Xn = X′ with probability

α(X′|Xn−1) = min
{
1,

π(X′)q(Xn−1|X′)

π(Xn−1)q(X′|Xn−1)

}
.

I Otherwise, set Xn = Xn−1.

Note the last step: we discard the sample X′ if rejected BUT set Xn =
Xn−1.
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Metropolis-Hastings
Metropolis-Hastings Algorithm

The ratio

r(x, x′) =
π(x′)q(x|x′)
π(x)q(x′|x)

,

is called acceptance ratio.
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Metropolis-Hastings
Metropolis-Hastings Algorithm

We have discussed explicit kernels in the discrete and continuous cases.

But the MH algorithm automatically gives us a kernel.

How to prove that the stationary distribution is the target distribution?
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Metropolis-Hastings
Metropolis-Hastings Algorithm

Let us figure out the kernel.

Let us say, we have the sample from the proposal x′. Fixing this sample,
the acceptance step samples from the mixture (intuitively):

α(x′|x)δx′(y) + (1− α(x′|x))δx(y).

To get the full kernel, we need to integrate over x′:

K(y|x) =
∫

q(x′|x)
(
α(x′|x)δx′(y) + (1− α(x′|x))δx(y)

)
dx′,

= α(y|x)q(y|x) + (1− a(x))δx(y)

where

a(x) =
∫

α(x′|x)q(x′|x)dx′.
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Metropolis-Hastings
Metropolis-Hastings Algorithm

More intuition in terms of xn and xn−1:
I What is the probability of being at xn−1 and getting accepted?

a(xn−1) =

∫
X
α(x|xn−1)q(x|xn−1)dx.

I Therefore, the probability of being at xn−1 and getting rejected is
1− a(xn−1).

We can see that the kernel is

K(xn|xn−1) = α(xn|xn−1)q(xn|xn−1) + (1− a(xn−1))δxn−1(xn).
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Metropolis-Hastings
Metropolis-Hastings Algorithm: Detailed Balance

We can now prove that the kernel satisfies the detailed balance condi-
tion:

K(x′|x)π(x) = K(x|x′)π(x′).
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Metropolis-Hastings
Metropolis-Hastings Algorithm: Detailed Balance

π(x)K(x′|x) = π(x)q(x′|x)α(x′, x) + π(x)(1− a(x))δx(x′)

= π(x)q(x′|x)min
{
1,

π(x′)q(x|x′)
π(x)q(x′|x)

}
+ π(x)(1− a(x))δx(x′)

= min
{
π(x)q(x′|x), π(x′)q(x|x′)

}
+ π(x)(1− a(x))δx(x′)

= min
{
π(x)q(x′|x)
π(x′)q(x|x′)

, 1

}
π(x′)q(x|x′) + π(x′)(1− a(x′))δx′(x)

= K(x|x′)π(x′).
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Metropolis-Hastings
Unnormalised density

Assume we are given an unnormalised density to sample γ where

π(x) =
γ(x)
Z

,

where Z is the normalisation constant.
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Metropolis-Hastings
Unnormalised density

I Sample X′ ∼ q(x′|Xn−1)

I Set Xn = X′ with probability

α(X′|Xn−1) = min
{
1,

γ(X′)q(Xn−1|X′)

γ(Xn−1)q(X′|Xn−1)

}
.

I Otherwise, set Xn = Xn−1.
as the normalising constants of π would cancel out.
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Metropolis-Hastings
How do we choose proposals?

I Independent proposals
I Symmetric (random walk) proposals
I Gradient-based proposals
I Adaptive proposals
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Metropolis-Hastings
Independent proposals

Choose the proposal q(x) independently of the current stateXn−1. Leads
to
I X′ ∼ q(x′)
I Accept with probability

α(X′|Xn−1) = min
{
1,

π(X′)q(Xn−1)

π(Xn−1)q(X′)

}
.

I Otherwise, set Xn = Xn−1.
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Metropolis-Hastings
Independent proposals

Let us say

π(x) = N (x;µ, σ2)

For the example, assume we want to use MH to sample from it. Choose
a proposal

q(x) = N (x;µq, σ
2
q).

How to compute the acceptance ratio?

55



Metropolis-Hastings
Independent proposals

r(x, x′) =
π(x′)q(x)
π(x)q(x′)

=
N (x′;µ, σ2)N (x;µq, σ

2
q)

N (x;µ, σ2)N (x′;µq, σ2
q)

=

1√
2πσ2

exp
(
− (x′−µ)2

2σ2

)
1√
2πσ2

q
exp

(
− (x−µq)2

2σ2
q

)
1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
1√
2πσ2

q
exp

(
− (x′−µq)2

2σ2
q

)

=
exp

(
− (x′−µ)2

2σ2

)
exp

(
− (x−µq)2

2σ2
q

)
exp

(
− (x−µ)2

2σ2

)
exp

(
− (x′−µq)2

2σ2
q

)
= e

(
− 1

2σ2

[
(x′−µ)2−(x−µ)2

])
e

(
− 1

2σ2q

[
(x−µq)2−(x′−µq)2

])
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Metropolis-Hastings
Random walk proposal

We can choose:

q(x′|x) = N (x′; x, σ2
q)

The proposal looks at where we are and take a random step (random
walk).

Note that q(x′|x) is symmetric, i.e. q(x|x′) = q(x′|x).
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Metropolis-Hastings
Random walk proposal

Acceptance ratio:

r(x, x′) =
π(x′)q(x|x′)
π(x)q(x′|x)

=
π(x′)
π(x)

,

=
N (x′;µ, σ2)

N (x;µ, σ2)

= e
(
− 1

2σ2

[
(x′−µ)2−(x−µ)2

])
.
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Metropolis-Hastings
Random walk proposal

Set a burnin period:
I Run the sampler for fixed number of iterations and discard the first

n samples.
I This accounts for the convergence to the stationary measure.
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Metropolis-Hastings
Gradient-based proposal

We can inform the proposal by using the gradient of the target distribu-
tion.

q(x′|x) = N (x′; x + γ∇ logπ(x), 2γI),

This tends to behave really well.

This approach is calledMetropolis adjusted Langevin algorithm (MALA).
(more on these later)
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Metropolis-Hastings
Caveats, design rules

I One has to be careful that p/q < ∞ (while no theoretical reason,
the performance tends to be quite bad).

I The proposal should attain a balance of acceptance rate and effi-
ciency.

I Too high acceptance rate is not necessarily good: You might be
taking too small steps and getting stuck in some regions
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Metropolis-Hastings
Bayesian inference with MH

Let us look at now the Bayesian inference problem.

We can solve it in full generality (in theory) using MH.

Recall the general formulation

p(x|y1:n) =
p(y1:n|x)p(x)

p(y1:n)
=

∏n
i=1 p(yi|x)p(x)

p(y1:n)
,

when y1, . . . , yn are conditionally independent given x.
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Metropolis-Hastings
Bayesian inference with MH

We write

p(x|y1:n) ∝
n∏

i=1

p(yi|x)p(x),

and set

γ(x) =
n∏

i=1

p(yi|x)p(x),

as our unnormalised posterior.
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Metropolis-Hastings
Bayesian inference with MH

The generic MH for Bayesian inference, given xn−1

I Sample X′ ∼ q(x′|xn−1).
I Accept xn = x′ with probability

α(xn−1, x′) = min
{
1,

γ(x′)q(xn−1|x′)
γ(xn−1)q(x′|xn−1)

}
.

I Otherwise, Xn = xn−1.
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Metropolis-Hastings
Example: Source localisation

Recall our example about localising a source using observations from a
sensor network.

We cannow formalise this problem. Assume that the source is located at
x ∈ R2 and the sensor network is located at s1, . . . , s3 ∈ R2 (3 sensors).

Assume that these three sensors ”observe” the source according to:

p(yi|x, si) = N (yi; ‖x − si‖,R),

where yi is the observation from sensor i.
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Metropolis-Hastings
Example: Source localisation
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Figure: Source localisation
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Metropolis-Hastings
Example: Source localisation

Assume that you are asked to estimate the location of the source given
the observations y1, y2, y3. What is the model?

We first need a prior on the source location:

p(x) = N (x;µ,Σ),

where µ is the prior mean and Σ is the prior covariance. We already
have the likelihoods for each yi.
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Metropolis-Hastings
Example: Source localisation

The posterior is given by

p(x|y1, y2, y3, s1, s2, s3) ∝ p(x)
3∏

i=1

p(yi|x, si).

68



Metropolis-Hastings
Example: Source localisation

We choose a random walk proposal:

q(x′|x) = N (x′; x, σ2I).

This is symmetric so the acceptance ratio is:

r(x, x′) =
p(x′)p(y1|x′, s1)p(y2|x′, s2)p(y3|x′, s3)
p(x)p(y1|x, s1)p(y2|x, s2)p(y3|x, s3)

.
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Metropolis-Hastings
The banana density

Consider the 2D density

p(x, y) ∝ exp
(
−x2

10
− y4

10
− 2(y − x2)2

)
.

Assume we would like to sample from it.
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Metropolis-Hastings
The banana density
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Figure: The banana density (unnormalised)
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Metropolis-Hastings
The banana density

We have

γ(x, y) = exp
(
−x2

10
− y4

10
− 2(y − x2)2

)
.

and let us choose two alternative proposals
I The random walk proposal:

q(x′, y′|x, y) = N (x′; x, σ2
q)N (y′; y, σ2

q).

I and the gradient-based proposal (MALA):

q(x′, y′|x, y) = N (z; z + γ∇ log γ(z),
√
2γI).

where z = (x, y) and γ is a step size.
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We have seen Metropolis-Hastings sampler.

I Unfortunately, it may not be very efficient.
I Acceptance ratios are very tricky to compute in a variety of set-

tings:
I High-dimensional problems
I Complex models
I Large datasets

I We will now look at a different approach: Langevin MCMC.
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Langevin-based approaches
Crash course on Langevin SDE - I

Consider the Langevin SDE for a generic drift ∇V :

dXt = −∇V(Xt)dt +
√
2dBt,

where (Bt)t≥0 is a Brownianmotion.

This SDEhas a stationarymeasure

π ∝ e−V(x).

Therefore, for a classical sampling problem for, say π(x), we could set
V(x) = − logπ(x) (negative density).

This diffusion converges to its stationary measure exponentially fast if
V is µ-strongly-convex.
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Langevin-based approaches
Crash course on Langevin SDE - II – Optimisation

Consider the Langevin SDE for a generic drift ∇V :

dXt = −∇V(Xt)dt +
√

2

β
dBt,

where (Bt)t≥0 is a Brownianmotion.

This SDEhas a stationarymeasure

π ∝ e−βV(x).

This stationary measure concentrates on the minima of V as β → ∞
(Hwang, 1980).

Langevin diffusion is a global optimiser.
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Langevin-based approaches
Crash course on Langevin SDE - III: Numerical discretisation

The Euler discretisation is the unadjusted Langevin algorithm (ULA):

Xγ
t+1 = Xγ

t − γ∇V(Xγ
t ) +

√
2γWt+1

where (Wt)t≥0 are i.i.d standard Normal random variables.

This chain has a different stationary measure πγ but a number of guar-
antees can be derived for its convergence.

Theorem 1 (Durmus and Moulines, 2019)
Let L(Xt) be the law of the iterates of ULA, then

W2
2 (L(X

γ
t ), π) .

(
1− γκ

2

)t+1
(d/m+ ‖x − x?‖2) + γ,

under suitable regularity conditions for V, restriction on γ where κ :=
κ(m, L).
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Langevin-based approaches
ULA for Bayesian inference

An important note here is that, we can sample from the posterior p(x|y)
using ULA as

p(x|y) ∝ p(x, y),

and

Xγ
n+1 = Xγ

n + γ∇ log p(Xγ
n , y) +

√
2γWn+1.

Wecan see that this algorithmwould approximately sample from p(x|y).

77



Langevin-based approaches
ULA for Bayesian inference

An important note here is that, we can sample from the posterior p(x|y)
using ULA as

p(x|y) ∝ p(x, y),

and

Xγ
n+1 = Xγ

n + γ∇ log p(Xγ
n , y) +

√
2γWn+1.

Wecan see that this algorithmwould approximately sample from p(x|y).

77



Langevin-based approaches
ULA for Bayesian inference

Let us say we have data y1, . . . , yM forM large. We can write the poste-
rior as

p(x|y1:M) ∝ p(x)
M∏
i=1

p(yi|x).

therefore, our potential becomes

V(x) = − log p(x)−
M∑
i=1

log p(yi|x).

Mini-quiz: What is the problem with MALA (or MH in general) in this
case?
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Langevin-based approaches
ULA for Bayesian inference

A similar problem of course would be for ULA.

However, we can resolve this, as we can approximate the gradient using
subsampling:

∇V(x) = ∇ log p(x) +
M∑
i=1

∇ log p(yi|x),

≈ ∇ log p(x) +
M
m

m∑
j=1

∇ log p(ykj |x) = ∇̂V(x),

where kj ∼ Unif{1, . . . ,M}, for j = 1, . . . ,m for m � M.

Stochastic gradients.
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Langevin-based approaches
ULA for Bayesian inference

One can run ULA with stochastic gradients:

Xγ
n+1 = Xγ

n − γ∇̂V(Xγ
n ) +

√
2γWn+1.

The resulting method is called stochastic gradient Langevin dynamics
(SGLD) (Welling and Teh, 2011).
I Widely used for large-scale datasets.
I It has similar guarantees toULA inWasserstein-2 distance for strongly

convex V .
I Also used to model and analyse the behaviour of stochastic gradi-

ent descent methods (SGD) in deep learning.
Web based simulations if time permits.
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