
Advanced Computational Methods in Statistics
Lecture 2

O. Deniz Akyildiz

LTCC Advanced Course

November 20, 2023

Recall our basic task:

▶ We want to sample from a distribution π(x) ∝ γ(x) given only
the knowledge of γ(x).

▶ We want to use these samples to estimate an integral

(φ, π) =

∫
φ(x)π(x) dx

2

Recall our basic task:
▶ We want to sample from a distribution π(x) ∝ γ(x) given only

the knowledge of γ(x).

▶ We want to use these samples to estimate an integral

(φ, π) =

∫
φ(x)π(x) dx

2

Recall our basic task:
▶ We want to sample from a distribution π(x) ∝ γ(x) given only

the knowledge of γ(x).
▶ We want to use these samples to estimate an integral

(φ, π) =

∫
φ(x)π(x) dx

2

Last week, we have covered the basic sampling techniques:

▶ Uniform random number generation
▶ Linear congruential generators

▶ Inversion (inverse transform) sampling
▶ U ∼ U(0, 1)
▶ X = F−1(U)

▶ Rejection sampling
▶ X ′ ∼ q(x)
▶ Accept X ′ with probability γ(X ′)/Mq(X ′)

▶ Importance sampling
▶ Sample X1, . . . , XN ∼ q(x)
▶ Estimate (φ, π) ≈

∑N
i=1 φ(Xi)wi,

The code is also available for these parts:

https://akyildiz.me/advanced-computational-statistics

3

https://akyildiz.me/advanced-computational-statistics

Last week, we have covered the basic sampling techniques:
▶ Uniform random number generation

▶ Linear congruential generators

▶ Inversion (inverse transform) sampling
▶ U ∼ U(0, 1)
▶ X = F−1(U)

▶ Rejection sampling
▶ X ′ ∼ q(x)
▶ Accept X ′ with probability γ(X ′)/Mq(X ′)

▶ Importance sampling
▶ Sample X1, . . . , XN ∼ q(x)
▶ Estimate (φ, π) ≈

∑N
i=1 φ(Xi)wi,

The code is also available for these parts:

https://akyildiz.me/advanced-computational-statistics

3

https://akyildiz.me/advanced-computational-statistics

Last week, we have covered the basic sampling techniques:
▶ Uniform random number generation

▶ Linear congruential generators
▶ Inversion (inverse transform) sampling

▶ U ∼ U(0, 1)
▶ X = F−1(U)

▶ Rejection sampling
▶ X ′ ∼ q(x)
▶ Accept X ′ with probability γ(X ′)/Mq(X ′)

▶ Importance sampling
▶ Sample X1, . . . , XN ∼ q(x)
▶ Estimate (φ, π) ≈

∑N
i=1 φ(Xi)wi,

The code is also available for these parts:

https://akyildiz.me/advanced-computational-statistics

3

https://akyildiz.me/advanced-computational-statistics

Last week, we have covered the basic sampling techniques:
▶ Uniform random number generation

▶ Linear congruential generators
▶ Inversion (inverse transform) sampling

▶ U ∼ U(0, 1)
▶ X = F−1(U)

▶ Rejection sampling
▶ X ′ ∼ q(x)
▶ Accept X ′ with probability γ(X ′)/Mq(X ′)

▶ Importance sampling
▶ Sample X1, . . . , XN ∼ q(x)
▶ Estimate (φ, π) ≈

∑N
i=1 φ(Xi)wi,

The code is also available for these parts:

https://akyildiz.me/advanced-computational-statistics

3

https://akyildiz.me/advanced-computational-statistics

Last week, we have covered the basic sampling techniques:
▶ Uniform random number generation

▶ Linear congruential generators
▶ Inversion (inverse transform) sampling

▶ U ∼ U(0, 1)
▶ X = F−1(U)

▶ Rejection sampling
▶ X ′ ∼ q(x)
▶ Accept X ′ with probability γ(X ′)/Mq(X ′)

▶ Importance sampling
▶ Sample X1, . . . , XN ∼ q(x)
▶ Estimate (φ, π) ≈

∑N
i=1 φ(Xi)wi,

The code is also available for these parts:

https://akyildiz.me/advanced-computational-statistics

3

https://akyildiz.me/advanced-computational-statistics

Last week, we have covered the basic sampling techniques:
▶ Uniform random number generation

▶ Linear congruential generators
▶ Inversion (inverse transform) sampling

▶ U ∼ U(0, 1)
▶ X = F−1(U)

▶ Rejection sampling
▶ X ′ ∼ q(x)
▶ Accept X ′ with probability γ(X ′)/Mq(X ′)

▶ Importance sampling
▶ Sample X1, . . . , XN ∼ q(x)
▶ Estimate (φ, π) ≈

∑N
i=1 φ(Xi)wi,

The code is also available for these parts:

https://akyildiz.me/advanced-computational-statistics

3

https://akyildiz.me/advanced-computational-statistics

OK, so what is wrong with these methods?

4

The curse of dimensionality
Rejection sampling as d → ∞

Let us exemplify a few issues. Consider the following target distribu-
tion on Rd:

π(x) =
1

σd
π(2π)

d/2
exp

(
− 1

2σ2
π

∥x∥2
)

and the following proposal distribution:

q(x) =
1

σd
q (2π)

d/2
exp

(
− 1

2σ2
q

∥x∥2
)

where σq > σπ.

5

The curse of dimensionality
Rejection sampling as d → ∞

We know that the acceptance probability is

α(x) =
π(x)

Mq(x)
.

Mini-quiz: How do we choose M?

M = sup
x∈Rd

π(x)

q(x)
.

Then, we can write

M = = sup
x∈Rd

σq
σπ

exp

(
− 1

2σ2
π

∥x∥2 + 1

2σ2
q

∥x∥2
)

=
σd
q

σd
π

sup
x∈Rd

exp

(
σ2
π − σ2

q

2σ2
qσ

2
π

∥x∥2
)

=
σd
q

σd
π

.

6

The curse of dimensionality
Rejection sampling as d → ∞

We know that the acceptance probability is

α(x) =
π(x)

Mq(x)
.

Mini-quiz: How do we choose M?

M = sup
x∈Rd

π(x)

q(x)
.

Then, we can write

M = = sup
x∈Rd

σq
σπ

exp

(
− 1

2σ2
π

∥x∥2 + 1

2σ2
q

∥x∥2
)

=
σd
q

σd
π

sup
x∈Rd

exp

(
σ2
π − σ2

q

2σ2
qσ

2
π

∥x∥2
)

=
σd
q

σd
π

.

6

The curse of dimensionality
Rejection sampling as d → ∞

We know that the acceptance probability is

α(x) =
π(x)

Mq(x)
.

Mini-quiz: How do we choose M?

M = sup
x∈Rd

π(x)

q(x)
.

Then, we can write

M = = sup
x∈Rd

σq
σπ

exp

(
− 1

2σ2
π

∥x∥2 + 1

2σ2
q

∥x∥2
)

=
σd
q

σd
π

sup
x∈Rd

exp

(
σ2
π − σ2

q

2σ2
qσ

2
π

∥x∥2
)

=
σd
q

σd
π

.

6

The curse of dimensionality
Rejection sampling as d → ∞

Mini-quiz: Given M , what is the acceptance rate?

â =
1

M
=

σd
π

σd
q

.

This means that as d → ∞, given σq > σπ, â → 0.

The curse of dimensionality for rejection samplers.

7

The curse of dimensionality
Rejection sampling as d → ∞

Mini-quiz: Given M , what is the acceptance rate?

â =
1

M
=

σd
π

σd
q

.

This means that as d → ∞, given σq > σπ, â → 0.

The curse of dimensionality for rejection samplers.

7

The curse of dimensionality
Rejection sampling as d → ∞

Mini-quiz: Given M , what is the acceptance rate?

â =
1

M
=

σd
π

σd
q

.

This means that as d → ∞, given σq > σπ, â → 0.

The curse of dimensionality for rejection samplers.

7

The curse of dimensionality
Importance sampling as d → ∞

In standard Monte Carlo methods course, you would hear things like

▶ Monte Carlo estimators are independent of the dimension of the
problem.

▶ Importance sampling estimators are also independent of the di-
mension of the problem.

These are false statements.

Importance sampling estimators also suffer badly as d → ∞ (Li et
al., 2005).

8

The curse of dimensionality
Importance sampling as d → ∞

In standard Monte Carlo methods course, you would hear things like
▶ Monte Carlo estimators are independent of the dimension of the

problem.

▶ Importance sampling estimators are also independent of the di-
mension of the problem.

These are false statements.

Importance sampling estimators also suffer badly as d → ∞ (Li et
al., 2005).

8

The curse of dimensionality
Importance sampling as d → ∞

In standard Monte Carlo methods course, you would hear things like
▶ Monte Carlo estimators are independent of the dimension of the

problem.
▶ Importance sampling estimators are also independent of the di-

mension of the problem.

These are false statements.

Importance sampling estimators also suffer badly as d → ∞ (Li et
al., 2005).

8

The curse of dimensionality
Importance sampling as d → ∞

In standard Monte Carlo methods course, you would hear things like
▶ Monte Carlo estimators are independent of the dimension of the

problem.
▶ Importance sampling estimators are also independent of the di-

mension of the problem.
These are false statements.

Importance sampling estimators also suffer badly as d → ∞ (Li et
al., 2005).

8

This motivates us to move on to our next topic: Markov chain Monte
Carlo methods.
▶ In both high-dimensional sampling and more generally genera-

tive modelling, techniques based on MCMC and similar ideas
are the state-of-the-art.

▶ Of course, there are many other techniques that are used in
practice, but MCMC is the most popular one.

Next up: Introducing Markov chains.

9

This motivates us to move on to our next topic: Markov chain Monte
Carlo methods.
▶ In both high-dimensional sampling and more generally genera-

tive modelling, techniques based on MCMC and similar ideas
are the state-of-the-art.

▶ Of course, there are many other techniques that are used in
practice, but MCMC is the most popular one.

Next up: Introducing Markov chains.

9

This motivates us to move on to our next topic: Markov chain Monte
Carlo methods.
▶ In both high-dimensional sampling and more generally genera-

tive modelling, techniques based on MCMC and similar ideas
are the state-of-the-art.

▶ Of course, there are many other techniques that are used in
practice, but MCMC is the most popular one.

Next up: Introducing Markov chains.

9

What is a Markov chain?

A discrete-time Markov chain is a sequence of random variables
X0, X1, . . . such that:

▶ Xt depends only on Xt−1

▶ In other words, Xt is conditionally independent of X0, . . . , Xt−2

given Xt−1.
The evolution of the chain is governed by:
▶ A transition matrix M (discrete case)
▶ A transition kernel K (continuous case)

Let us denote our state-space with X.

10

What is a Markov chain?

A discrete-time Markov chain is a sequence of random variables
X0, X1, . . . such that:
▶ Xt depends only on Xt−1

▶ In other words, Xt is conditionally independent of X0, . . . , Xt−2

given Xt−1.
The evolution of the chain is governed by:
▶ A transition matrix M (discrete case)
▶ A transition kernel K (continuous case)

Let us denote our state-space with X.

10

What is a Markov chain?

A discrete-time Markov chain is a sequence of random variables
X0, X1, . . . such that:
▶ Xt depends only on Xt−1

▶ In other words, Xt is conditionally independent of X0, . . . , Xt−2

given Xt−1.

The evolution of the chain is governed by:
▶ A transition matrix M (discrete case)
▶ A transition kernel K (continuous case)

Let us denote our state-space with X.

10

What is a Markov chain?

A discrete-time Markov chain is a sequence of random variables
X0, X1, . . . such that:
▶ Xt depends only on Xt−1

▶ In other words, Xt is conditionally independent of X0, . . . , Xt−2

given Xt−1.
The evolution of the chain is governed by:

▶ A transition matrix M (discrete case)
▶ A transition kernel K (continuous case)

Let us denote our state-space with X.

10

What is a Markov chain?

A discrete-time Markov chain is a sequence of random variables
X0, X1, . . . such that:
▶ Xt depends only on Xt−1

▶ In other words, Xt is conditionally independent of X0, . . . , Xt−2

given Xt−1.
The evolution of the chain is governed by:
▶ A transition matrix M (discrete case)

▶ A transition kernel K (continuous case)
Let us denote our state-space with X.

10

What is a Markov chain?

A discrete-time Markov chain is a sequence of random variables
X0, X1, . . . such that:
▶ Xt depends only on Xt−1

▶ In other words, Xt is conditionally independent of X0, . . . , Xt−2

given Xt−1.
The evolution of the chain is governed by:
▶ A transition matrix M (discrete case)
▶ A transition kernel K (continuous case)

Let us denote our state-space with X.

10

What is a Markov chain?

A discrete-time Markov chain is a sequence of random variables
X0, X1, . . . such that:
▶ Xt depends only on Xt−1

▶ In other words, Xt is conditionally independent of X0, . . . , Xt−2

given Xt−1.
The evolution of the chain is governed by:
▶ A transition matrix M (discrete case)
▶ A transition kernel K (continuous case)

Let us denote our state-space with X.

10

What is a Markov chain?
Example 1: Simulate a discrete Markov chain

Consider the transition matrix:

M =

0.6 0.2 0.2
0.3 0.5 0.2
0 0.3 0.7

 , where X = {1, 2, 3}.

1 2

3

0.6
0.2

0.2

0.3

0.5

0.2

0
0.3

0.7

11

What is a Markov chain?
Example 1: Simulate a discrete Markov chain – What does the matrix M mean?

M Xt = 1 Xt = 2 Xt = 3

Xt−1 = 1 0.6 0.2 0.2
Xt−1 = 2 0.3 0.5 0.2
Xt−1 = 3 0 0.3 0.7

Example: Given X0 = 1, how to simulate this chain?

Sample:

Xt|Xt = xt−1 ∼ Discrete(Mxt−1,·).

Simulation!

12

What is a Markov chain?
Example 1: Simulate a discrete Markov chain – What does the matrix M mean?

M Xt = 1 Xt = 2 Xt = 3

Xt−1 = 1 0.6 0.2 0.2
Xt−1 = 2 0.3 0.5 0.2
Xt−1 = 3 0 0.3 0.7

Example: Given X0 = 1, how to simulate this chain?

Sample:

Xt|Xt = xt−1 ∼ Discrete(Mxt−1,·).

Simulation!

12

What is a Markov chain?
The discrete case: The evolution of the density of the chain

Let p0(i) = P(X0 = i) for i ∈ X.

Then, the density of the chain at
time n is given by:

pn(i) = P(Xn = i)

=
∑
k

P(Xn = i,Xn−1 = k)

=
∑
k

P(Xn = i|Xn−1 = k)P(Xn−1 = k)

=
∑
k

Mkipn−1(k).

This implies that

pn = pn−1M.

Therefore,

pn = p0M
n.

13

What is a Markov chain?
The discrete case: The evolution of the density of the chain

Let p0(i) = P(X0 = i) for i ∈ X. Then, the density of the chain at
time n is given by:

pn(i) = P(Xn = i)

=
∑
k

P(Xn = i,Xn−1 = k)

=
∑
k

P(Xn = i|Xn−1 = k)P(Xn−1 = k)

=
∑
k

Mkipn−1(k).

This implies that

pn = pn−1M.

Therefore,

pn = p0M
n.

13

What is a Markov chain?
The discrete case: The evolution of the density of the chain

Let p0(i) = P(X0 = i) for i ∈ X. Then, the density of the chain at
time n is given by:

pn(i) = P(Xn = i)

=
∑
k

P(Xn = i,Xn−1 = k)

=
∑
k

P(Xn = i|Xn−1 = k)P(Xn−1 = k)

=
∑
k

Mkipn−1(k).

This implies that

pn = pn−1M.

Therefore,

pn = p0M
n.

13

What is a Markov chain?
The discrete case: The evolution of the density of the chain

Let p0(i) = P(X0 = i) for i ∈ X. Then, the density of the chain at
time n is given by:

pn(i) = P(Xn = i)

=
∑
k

P(Xn = i,Xn−1 = k)

=
∑
k

P(Xn = i|Xn−1 = k)P(Xn−1 = k)

=
∑
k

Mkipn−1(k).

This implies that

pn = pn−1M.

Therefore,

pn = p0M
n.

13

Properties of Markov chains
What do we need?

We need Markov chains

▶ With invariant distributions
▶ Their convergence is ensured
▶ Their invariant distribution is unique

We will now review the properties which ensure these in discrete
space case.

14

Properties of Markov chains
What do we need?

We need Markov chains
▶ With invariant distributions
▶ Their convergence is ensured
▶ Their invariant distribution is unique

We will now review the properties which ensure these in discrete
space case.

14

Properties of Markov chains
What do we need?

We need Markov chains
▶ With invariant distributions
▶ Their convergence is ensured
▶ Their invariant distribution is unique

We will now review the properties which ensure these in discrete
space case.

14

Properties of Markov chains
Irreducibility

For two states, x, x′ ∈ X, we write x⇝ x′ if there is a path from x
to x′:

∃n > 0, s.t. ,P(Xn = x′|X0 = x) > 0.

If x⇝ x′ and x′ ⇝ x, then we say that x and x′ communicate.

A communication class C ⊂ X is a set of states such that x ∈ C
and x′ ∈ C if and only if x⇝ x′ and x′ ⇝ x.

A chain is irreducible if X is a single communication class.

15

Properties of Markov chains
Irreducibility

For two states, x, x′ ∈ X, we write x⇝ x′ if there is a path from x
to x′:

∃n > 0, s.t. ,P(Xn = x′|X0 = x) > 0.

If x⇝ x′ and x′ ⇝ x, then we say that x and x′ communicate.

A communication class C ⊂ X is a set of states such that x ∈ C
and x′ ∈ C if and only if x⇝ x′ and x′ ⇝ x.

A chain is irreducible if X is a single communication class.

15

Properties of Markov chains
Irreducibility

For two states, x, x′ ∈ X, we write x⇝ x′ if there is a path from x
to x′:

∃n > 0, s.t. ,P(Xn = x′|X0 = x) > 0.

If x⇝ x′ and x′ ⇝ x, then we say that x and x′ communicate.

A communication class C ⊂ X is a set of states such that x ∈ C
and x′ ∈ C if and only if x⇝ x′ and x′ ⇝ x.

A chain is irreducible if X is a single communication class.

15

Properties of Markov chains
Irreducibility

For two states, x, x′ ∈ X, we write x⇝ x′ if there is a path from x
to x′:

∃n > 0, s.t. ,P(Xn = x′|X0 = x) > 0.

If x⇝ x′ and x′ ⇝ x, then we say that x and x′ communicate.

A communication class C ⊂ X is a set of states such that x ∈ C
and x′ ∈ C if and only if x⇝ x′ and x′ ⇝ x.

A chain is irreducible if X is a single communication class.

15

Properties of Markov chains
Recurrence and transience

A Markov chain is recurrent if every state is to be visited infinitely
often.

Define the return time:

τi = inf{n ≥ 0 : Xn = i}.

We say that the state is recurrent if

P(τi < ∞|X1 = i) = 1.

If a state is not recurrent, it is transient.

16

Properties of Markov chains
Recurrence and transience

A Markov chain is recurrent if every state is to be visited infinitely
often.

Define the return time:

τi = inf{n ≥ 0 : Xn = i}.

We say that the state is recurrent if

P(τi < ∞|X1 = i) = 1.

If a state is not recurrent, it is transient.

16

Properties of Markov chains
Positive and null recurrence

We say that a state i is positively recurrent if

E[τi|X1 = i] < ∞.

If a recurrent state is not positive recurrent, it is null recurrent.

17

Properties of Markov chains
Positive and null recurrence

We say that a state i is positively recurrent if

E[τi|X1 = i] < ∞.

If a recurrent state is not positive recurrent, it is null recurrent.

17

Properties of Markov chains
Invariant distribution

A probability mass function π is called M -invariant if

π(i) =
∑
j

Mijπ(j).

Equivalently

π = πM.

18

Properties of Markov chains
Invariant distribution

A probability mass function π is called M -invariant if

π(i) =
∑
j

Mijπ(j).

Equivalently

π = πM.

18

Properties of Markov chains
Existence and uniqueness of the invariant distribution

Theorem 1
If M is irreducible, then M has a unique invariant distribution if and
only if it is positive recurrent.

This is existence, we do not talk about convergence yet.

19

Properties of Markov chains
Existence and uniqueness of the invariant distribution

Theorem 1
If M is irreducible, then M has a unique invariant distribution if and
only if it is positive recurrent.

This is existence, we do not talk about convergence yet.

19

Properties of Markov chains
Reversibility and detailed balance

We will define reversibility through detailed balance condition.

A Markov transition matrix M is reversible w.r.t. π if and only if for
all i, j ∈ X,

π(i)Mij = π(j)Mji.

This is called the detailed balance condition (we will discuss the
continuous version)

Constructing a chain with stationary distribution π is ensured if de-
tailed balance is satisfied since it implies π = πM .

20

Properties of Markov chains
Reversibility and detailed balance

We will define reversibility through detailed balance condition.

A Markov transition matrix M is reversible w.r.t. π if and only if for
all i, j ∈ X,

π(i)Mij = π(j)Mji.

This is called the detailed balance condition (we will discuss the
continuous version)

Constructing a chain with stationary distribution π is ensured if de-
tailed balance is satisfied since it implies π = πM .

20

Properties of Markov chains
Reversibility and detailed balance

We will define reversibility through detailed balance condition.

A Markov transition matrix M is reversible w.r.t. π if and only if for
all i, j ∈ X,

π(i)Mij = π(j)Mji.

This is called the detailed balance condition (we will discuss the
continuous version)

Constructing a chain with stationary distribution π is ensured if de-
tailed balance is satisfied since it implies π = πM .

20

Properties of Markov chains
Ergodicity

We have seen how to construct chains with invariant distributions π.

However, the convergence of the chain pn → π requires one more
ingredient: ergodicity.

For this, we need a final ingredient: aperiodicity.

21

Properties of Markov chains
Ergodicity

We have seen how to construct chains with invariant distributions π.

However, the convergence of the chain pn → π requires one more
ingredient: ergodicity.

For this, we need a final ingredient: aperiodicity.

21

Properties of Markov chains
Ergodicity

We have seen how to construct chains with invariant distributions π.

However, the convergence of the chain pn → π requires one more
ingredient: ergodicity.

For this, we need a final ingredient: aperiodicity.

21

Properties of Markov chains
Aperiodicity

A state i is called aperiodic if

{n > 0 : P(Xn+1 = i|X1 = i) > 0}

has no common divisor other than 1.

22

Properties of Markov chains
Ergodicity

Definition 2
An irreducible Markov chain is called ergodic if it is positive recurrent
and aperiodic.

Ergodicity brings us the missing ingredient for the convergence: We
can now ensure pn to converge to π.

23

Properties of Markov chains
Ergodicity

Definition 2
An irreducible Markov chain is called ergodic if it is positive recurrent
and aperiodic.

Ergodicity brings us the missing ingredient for the convergence: We
can now ensure pn to converge to π.

23

Properties of Markov chains
Ergodicity

If (Xn)n∈N is an ergodic Markov chain with any initial p0 and a
Markov transition matrix M with π as its invariant distribution, then

lim
n→∞

pn(i) = π(i).

Moreover, for i, j ∈ X

lim
n→∞

P(Xn = i|X1 = j) = π(i).

24

Properties of Markov chains
Ergodicity

If (Xn)n∈N is an ergodic Markov chain with any initial p0 and a
Markov transition matrix M with π as its invariant distribution, then

lim
n→∞

pn(i) = π(i).

Moreover, for i, j ∈ X

lim
n→∞

P(Xn = i|X1 = j) = π(i).

24

Properties of Markov chains

What about continuous state-space Markov chains, i.e., where X is
uncountable, e.g., X = R?

We will be mainly interested in the continuous case, however, the
analogous concepts are defined in a much more complicated way.

We will not go into the details here, we will just now introduce the
continuous state-space notation.

25

Properties of Markov chains

What about continuous state-space Markov chains, i.e., where X is
uncountable, e.g., X = R?

We will be mainly interested in the continuous case, however, the
analogous concepts are defined in a much more complicated way.

We will not go into the details here, we will just now introduce the
continuous state-space notation.

25

Properties of Markov chains

What about continuous state-space Markov chains, i.e., where X is
uncountable, e.g., X = R?

We will be mainly interested in the continuous case, however, the
analogous concepts are defined in a much more complicated way.

We will not go into the details here, we will just now introduce the
continuous state-space notation.

25

What is a Markov chain?
The continuous case case

We assume now our state-space is uncountable, e.g., X = R.

We denote the initial density of the chain by p0(x).

The transition kernel is denoted K(xn|xn−1).

The density of the chain at time n is denoted by pn(xn).

26

What is a Markov chain?
The continuous case case

We assume now our state-space is uncountable, e.g., X = R.

We denote the initial density of the chain by p0(x).

The transition kernel is denoted K(xn|xn−1).

The density of the chain at time n is denoted by pn(xn).

26

What is a Markov chain?
The continuous case case

We assume now our state-space is uncountable, e.g., X = R.

We denote the initial density of the chain by p0(x).

The transition kernel is denoted K(xn|xn−1).

The density of the chain at time n is denoted by pn(xn).

26

What is a Markov chain?
The continuous case case

We assume now our state-space is uncountable, e.g., X = R.

We denote the initial density of the chain by p0(x).

The transition kernel is denoted K(xn|xn−1).

The density of the chain at time n is denoted by pn(xn).

26

What is a Markov chain?
The continuous case

A discrete-time Markov chain is a process (Xn)n∈N, when X is un-
countable, satisfies:

p(xn|x1:n−1) = p(xn|xn−1) = K(xn|xn−1).

X0 X1 X2 · · · Xn

27

What is a Markov chain?
The continuous case

A discrete-time Markov chain is a process (Xn)n∈N, when X is un-
countable, satisfies:

p(xn|x1:n−1) = p(xn|xn−1) = K(xn|xn−1).

X0 X1 X2 · · · Xn

27

What is a Markov chain?
The continuous case

A discrete-time Markov chain is a process (Xn)n∈N, when X is un-
countable, satisfies:

p(xn|x1:n−1) = p(xn|xn−1) = K(xn|xn−1).

X0 X1 X2 · · · Xn

27

What is a Markov chain?
The continuous case

We will again consider the time-homogeneous case, i.e. the transition
kernel is time-independent.

A Markov chain therefore can be defined
entirely by its:
▶ Initial state (or initial distribution)
▶ Transition kernel

28

What is a Markov chain?
The continuous case

We will again consider the time-homogeneous case, i.e. the transition
kernel is time-independent. A Markov chain therefore can be defined
entirely by its:
▶ Initial state (or initial distribution)
▶ Transition kernel

28

What is a Markov chain?
The continuous case

The transition kernel is a density function K(xn|xn−1) for fixed xn−1,
i.e., ∫

X
K(xn|xn−1) dxn = 1.

Otherwise, it is a function of (xn, xn−1).

29

What is a Markov chain?
Example 1: Simulate a continuous-state Markov chain

Consider the following Markov chain: X0 = 0 and

K(xn|xn−1) = N (xn; axn−1, 1),

where 0 < a < 1.

We can simulate this chain by:

X1 ∼ N (0, 1)

X2 ∼ N (aX1, 1)

X3 ∼ N (aX2, 1)

...
Xn ∼ N (aXn−1, 1).

Simulation.

30

What is a Markov chain?
Example 1: Simulate a continuous-state Markov chain

Consider the following Markov chain: X0 = 0 and

K(xn|xn−1) = N (xn; axn−1, 1),

where 0 < a < 1.
We can simulate this chain by:

X1 ∼ N (0, 1)

X2 ∼ N (aX1, 1)

X3 ∼ N (aX2, 1)

...
Xn ∼ N (aXn−1, 1).

Simulation.

30

What is a Markov chain?
The continuous case: Chapman-Kolmogorov equations

The Chapman-Kolmogorov equation for the continuous case

p(xn|xn−k) =

∫
X
K(xn|xn−1)p(xn−1|xn−k) dxn−1,

for k > 1.

31

What is a Markov chain?
The continuous case: The evolution of the density of the chain

Let p0(x) be the initial density such that X0 ∼ p0(x).

Then, the density of the chain at time n is given by

pn(xn) =

∫
X
K(xn|xn−1)pn−1(xn−1) dxn−1.

32

What is a Markov chain?
The continuous case: m-step transition kernel

It is useful for us to define the m-step transition kernel:

p(xm+n|xn) = Km(xm+n|xn),

=

∫
X
K(xm+n|xm+n−1) · · ·K(xn+1|xn) dxm+n−1 · · · dxn+1.

33

What is a Markov chain?
Properties

We have the similar conditions of aperiodicity and irreducibility as in
the discrete case, but,
▶ These are defined over sets rather than states.
▶ irreducibility is replaced by ϕ-irreducibility.
▶ aperiodicity is defined for sets

We will not go into the details of these conditions for continuous
space case.

34

What is a Markov chain?
Properties

We have the similar conditions of aperiodicity and irreducibility as in
the discrete case, but,
▶ These are defined over sets rather than states.
▶ irreducibility is replaced by ϕ-irreducibility.
▶ aperiodicity is defined for sets

We will not go into the details of these conditions for continuous
space case.

34

What is a Markov chain?
Invariant distribution

A probability distribution π is called K-invariant if

π(x) =

∫
X
π(x′)K(x|x′) dx′.

Similar to the discrete case.

35

What is a Markov chain?
Detailed balance and reversibility

The detailed balance condition for the continuous case takes a similar
form:

π(x)K(x′|x) = π(x′)K(x|x′).

Note that this is a sufficient condition for stationarity of π:∫
π(x)K(x′|x)dy =

∫
π(x′)K(x|x′)dx′,

=⇒ π(x) =

∫
K(x|x′)π(x′)dx′,

which implies π is K-invariant.

36

What is a Markov chain?
Detailed balance and reversibility

The detailed balance condition for the continuous case takes a similar
form:

π(x)K(x′|x) = π(x′)K(x|x′).

Note that this is a sufficient condition for stationarity of π:∫
π(x)K(x′|x)dy =

∫
π(x′)K(x|x′)dx′,

=⇒ π(x) =

∫
K(x|x′)π(x′)dx′,

which implies π is K-invariant.

36

What is a Markov chain?
Example: Go back to Gaussian model

Consider the following Markov chain: X0 = 0 and

K(xn|xn−1) = N (xn; axn−1, 1),

where 0 < a < 1.

Note that we can also write this as

Xn = aXn−1 + ϵn,

where ϵn ∼ N (0, 1).

37

What is a Markov chain?
Example: Go back to Gaussian model

Consider the following Markov chain: X0 = 0 and

K(xn|xn−1) = N (xn; axn−1, 1),

where 0 < a < 1. Note that we can also write this as

Xn = aXn−1 + ϵn,

where ϵn ∼ N (0, 1).

37

What is a Markov chain?
Example: Go back to Gaussian model

Prove that for

π(x) = N
(
x; 0,

1

1− a2

)
,

the detailed balance condition is satisfied for the kernel

K(xn|xn−1) = N (xn; axn−1, 1),

where 0 < a < 1.

38

What is a Markov chain?
Example: Go back to Gaussian model

Prove that Km(xm+n|xn) is given by

Km(xm+n|xn) = N
(
xm+n; a

mxn,
1− a2m

1− a2

)
.

Then prove that

π(x) = lim
m→∞

Km(x|x′),

independent of x′.

39

Why Markov chains?
Since we want i.i.d samples

Theorem 3
If K is an irreducible, π-invariant kernel, then for any integrable
function φ

lim
T→∞

1

T

T∑
i=1

φ(Xi) =

∫
φ(x)π(x)dx = (φ, π),

almost surely, for almost all initial points x0.

Therefore, we can use these samples to estimate our integrals.

40

Why Markov chains?
Since we want i.i.d samples

Theorem 3
If K is an irreducible, π-invariant kernel, then for any integrable
function φ

lim
T→∞

1

T

T∑
i=1

φ(Xi) =

∫
φ(x)π(x)dx = (φ, π),

almost surely, for almost all initial points x0.

Therefore, we can use these samples to estimate our integrals.

40

Why Markov chains?
Since we want i.i.d samples

Theorem 4
If K is irreducible, aperiodic, and π-invariant, then

lim
T→∞

∫
X
|KT (y|x)− π(y)|dy = 0,

for π-almost all starting values x.

41

Markov chain Monte Carlo
How to design good kernels?

We will first look at a surprisingly simple approach: the Metropolis-
Hastings algorithm.

This approach relies on the following idea:
▶ We can sample from a proposal q(x|x′) (that is a Markov kernel)
▶ We can use accept/reject

We can design the process so that the stationary distribution of the
chain is the target distribution.

This is however very different from the rejection sampling approach.

42

Markov chain Monte Carlo
How to design good kernels?

We will first look at a surprisingly simple approach: the Metropolis-
Hastings algorithm.

This approach relies on the following idea:

▶ We can sample from a proposal q(x|x′) (that is a Markov kernel)
▶ We can use accept/reject

We can design the process so that the stationary distribution of the
chain is the target distribution.

This is however very different from the rejection sampling approach.

42

Markov chain Monte Carlo
How to design good kernels?

We will first look at a surprisingly simple approach: the Metropolis-
Hastings algorithm.

This approach relies on the following idea:
▶ We can sample from a proposal q(x|x′) (that is a Markov kernel)

▶ We can use accept/reject
We can design the process so that the stationary distribution of the
chain is the target distribution.

This is however very different from the rejection sampling approach.

42

Markov chain Monte Carlo
How to design good kernels?

We will first look at a surprisingly simple approach: the Metropolis-
Hastings algorithm.

This approach relies on the following idea:
▶ We can sample from a proposal q(x|x′) (that is a Markov kernel)
▶ We can use accept/reject

We can design the process so that the stationary distribution of the
chain is the target distribution.

This is however very different from the rejection sampling approach.

42

Markov chain Monte Carlo
How to design good kernels?

We will first look at a surprisingly simple approach: the Metropolis-
Hastings algorithm.

This approach relies on the following idea:
▶ We can sample from a proposal q(x|x′) (that is a Markov kernel)
▶ We can use accept/reject

We can design the process so that the stationary distribution of the
chain is the target distribution.

This is however very different from the rejection sampling approach.

42

Markov chain Monte Carlo
How to design good kernels?

We will first look at a surprisingly simple approach: the Metropolis-
Hastings algorithm.

This approach relies on the following idea:
▶ We can sample from a proposal q(x|x′) (that is a Markov kernel)
▶ We can use accept/reject

We can design the process so that the stationary distribution of the
chain is the target distribution.

This is however very different from the rejection sampling approach.

42

Metropolis-Hastings

Consider the following method:
▶ Sample X ′ ∼ q(x′|Xn−1)

▶ Set Xn = X ′ with probability

α(X ′|Xn−1) = min

{
1,

π(X ′)q(Xn−1|X ′)

π(Xn−1)q(X ′|Xn−1)

}
.

▶ Otherwise, set Xn = Xn−1.

Note the last step: we discard the sample X ′ if rejected BUT set
Xn = Xn−1.

43

Metropolis-Hastings

Consider the following method:
▶ Sample X ′ ∼ q(x′|Xn−1)

▶ Set Xn = X ′ with probability

α(X ′|Xn−1) = min

{
1,

π(X ′)q(Xn−1|X ′)

π(Xn−1)q(X ′|Xn−1)

}
.

▶ Otherwise, set Xn = Xn−1.
Note the last step: we discard the sample X ′ if rejected BUT set
Xn = Xn−1.

43

Metropolis-Hastings
Metropolis-Hastings Algorithm

The ratio

r(x, x′) =
π(x′)q(x|x′)
π(x)q(x′|x)

,

is called acceptance ratio.

44

Metropolis-Hastings
Metropolis-Hastings Algorithm

We have discussed explicit kernels in the discrete and continuous
cases.

But the MH algorithm automatically gives us a kernel.

How to prove that the stationary distribution is the target distribu-
tion?

45

Metropolis-Hastings
Metropolis-Hastings Algorithm

We have discussed explicit kernels in the discrete and continuous
cases.

But the MH algorithm automatically gives us a kernel.

How to prove that the stationary distribution is the target distribu-
tion?

45

Metropolis-Hastings
Metropolis-Hastings Algorithm

We have discussed explicit kernels in the discrete and continuous
cases.

But the MH algorithm automatically gives us a kernel.

How to prove that the stationary distribution is the target distribu-
tion?

45

Metropolis-Hastings
Metropolis-Hastings Algorithm

Let us figure out the kernel.

Let us say, we have the sample from the proposal x′. Fixing this
sample, the acceptance step samples from the mixture

α(x′|x)δx′(dy) + (1− α(x′|x))δx(dy).

To get the full kernel, we need to integrate over x′:

K(y|x) =
∫

q(x′|x)
(
α(x′|x)δx′(y) + (1− α(x′|x))δx(y)

)
dx′,

= α(y|x)q(y|x) + (1− a(x))δx(y)

where

a(x) =

∫
α(x′|x)q(x′|x)dx′.

46

Metropolis-Hastings
Metropolis-Hastings Algorithm

Let us figure out the kernel.

Let us say, we have the sample from the proposal x′. Fixing this
sample, the acceptance step samples from the mixture

α(x′|x)δx′(dy) + (1− α(x′|x))δx(dy).

To get the full kernel, we need to integrate over x′:

K(y|x) =
∫

q(x′|x)
(
α(x′|x)δx′(y) + (1− α(x′|x))δx(y)

)
dx′,

= α(y|x)q(y|x) + (1− a(x))δx(y)

where

a(x) =

∫
α(x′|x)q(x′|x)dx′.

46

Metropolis-Hastings
Metropolis-Hastings Algorithm

More intuition in terms of xn and xn−1:
▶ What is the probability of being at xn−1 and getting accepted?

a(xn−1) =

∫
X
α(x|xn−1)q(x|xn−1)dx.

▶ Therefore, the probability of being at xn−1 and getting rejected
is 1− a(xn−1).

We can see that the kernel is

K(xn|xn−1) = α(xn|xn−1)q(xn|xn−1) + (1− a(xn−1))δxn−1(xn).

47

Metropolis-Hastings
Metropolis-Hastings Algorithm: Detailed Balance

We can now prove that the kernel satisfies the detailed balance con-
dition:

K(x′|x)π(x) = K(x|x′)π(x′).

48

Metropolis-Hastings
Metropolis-Hastings Algorithm: Detailed Balance

π(x)K(x′|x) = π(x)q(x′|x)α(x′, x) + π(x)(1− a(x))δx(x
′)

= π(x)q(x′|x)min

{
1,

π(x′)q(x|x′)
π(x)q(x′|x)

}
+ π(x)(1− a(x))δx(x

′)

= min
{
π(x)q(x′|x), π(x′)q(x|x′)

}
+ π(x)(1− a(x))δx(x

′)

= min

{
π(x)q(x′|x)
π(x′)q(x|x′)

, 1

}
π(x′)q(x|x′) + π(x′)(1− a(x′))δx′(x)

= K(x|x′)π(x′).

49

Metropolis-Hastings
Unnormalised density

Assume we are given an unnormalised density to sample γ where

π(x) =
γ(x)

Z
,

where Z is the normalisation constant.

50

Metropolis-Hastings
Unnormalised density

▶ Sample X ′ ∼ q(x′|Xn−1)

▶ Set Xn = X ′ with probability

α(X ′|Xn−1) = min

{
1,

γ(X ′)q(Xn−1|X ′)

γ(Xn−1)q(X ′|Xn−1)

}
.

▶ Otherwise, set Xn = Xn−1.
as the normalising constants of π would cancel out.

51

Metropolis-Hastings
How do we choose proposals?

▶ Independent proposals
▶ Symmetric (random walk) proposals
▶ Gradient-based proposals
▶ Adaptive proposals

52

Metropolis-Hastings
Independent proposals

Choose the proposal q(x) independently of the current state Xn−1.
Leads to
▶ X ′ ∼ q(x′)

▶ Accept with probability

α(X ′|Xn−1) = min

{
1,

π(X ′)q(Xn−1)

π(Xn−1)q(X ′)

}
.

▶ Otherwise, set Xn = Xn−1.

53

Metropolis-Hastings
Independent proposals

Let us say

π(x) = N (x;µ, σ2)

For the example, assume we want to use MH to sample from it.
Choose a proposal

q(x) = N (x;µq, σ
2
q).

How to compute the acceptance ratio?

54

Metropolis-Hastings
Independent proposals

r(x, x′) =
π(x′)q(x)

π(x)q(x′)

=
N (x′;µ, σ2)N (x;µq, σ

2
q)

N (x;µ, σ2)N (x′;µq, σ2
q)

=

1√
2πσ2

exp
(
− (x′−µ)2

2σ2

)
1√
2πσ2

q

exp
(
− (x−µq)2

2σ2
q

)
1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
1√
2πσ2

q

exp
(
− (x′−µq)2

2σ2
q

)
=

exp
(
− (x′−µ)2

2σ2

)
exp

(
− (x−µq)2

2σ2
q

)
exp

(
− (x−µ)2

2σ2

)
exp

(
− (x′−µq)2

2σ2
q

)
= e

(
− 1

2σ2 [(x′−µ)2−(x−µ)2]
)
e

(
− 1

2σ2
q
[(x−µq)2−(x′−µq)2]

)

Simulation.
55

Metropolis-Hastings
Random walk proposal

We can choose:

q(x′|x) = N (x′;x, σ2
q)

The proposal looks at where we are and take a random step (random
walk).

Note that q(x′|x) is symmetric, i.e. q(x|x′) = q(x′|x).

56

Metropolis-Hastings
Random walk proposal

We can choose:

q(x′|x) = N (x′;x, σ2
q)

The proposal looks at where we are and take a random step (random
walk).

Note that q(x′|x) is symmetric, i.e. q(x|x′) = q(x′|x).

56

Metropolis-Hastings
Random walk proposal

Acceptance ratio:

r(x, x′) =
π(x′)q(x|x′)
π(x)q(x′|x)

=
π(x′)

π(x)
,

=
N (x′;µ, σ2)

N (x;µ, σ2)

= e

(
− 1

2σ2 [(x′−µ)2−(x−µ)2]
)
.

Simulation.

57

Metropolis-Hastings
Random walk proposal

Set a burnin period:
▶ Run the sampler for fixed number of iterations and discard the

first n samples.
▶ This accounts for the convergence to the stationary measure.

58

Metropolis-Hastings
Gradient-based proposal

We can inform the proposal by using the gradient of the target dis-
tribution.

q(x′|x) = N (x′;x+ γ∇ log π(x), 2γI),

This tends to behave really well.

This approach is called Metropolis adjusted Langevin algorithm (MALA).
(more on these later)

59

Metropolis-Hastings
Gradient-based proposal

We can inform the proposal by using the gradient of the target dis-
tribution.

q(x′|x) = N (x′;x+ γ∇ log π(x), 2γI),

This tends to behave really well.

This approach is called Metropolis adjusted Langevin algorithm (MALA).
(more on these later)

59

Metropolis-Hastings
Caveats, design rules

▶ One has to be careful that p/q < ∞ (while no theoretical reason,
the performance tends to be quite bad).

▶ The proposal should attain a balance of acceptance rate and
efficiency.

▶ Too high acceptance rate is not necessarily good: You might
be taking too small steps and getting stuck in some regions

60

Metropolis-Hastings
Caveats, design rules

▶ One has to be careful that p/q < ∞ (while no theoretical reason,
the performance tends to be quite bad).

▶ The proposal should attain a balance of acceptance rate and
efficiency.

▶ Too high acceptance rate is not necessarily good: You might
be taking too small steps and getting stuck in some regions

60

Metropolis-Hastings
Caveats, design rules

▶ One has to be careful that p/q < ∞ (while no theoretical reason,
the performance tends to be quite bad).

▶ The proposal should attain a balance of acceptance rate and
efficiency.

▶ Too high acceptance rate is not necessarily good: You might
be taking too small steps and getting stuck in some regions

60

Metropolis-Hastings
Bayesian inference with MH

Let us look at now the Bayesian inference problem.

We can solve it in full generality (in theory) using MH.

Recall the general formulation

p(x|y1:n) =
p(y1:n|x)p(x)

p(y1:n)
=

∏n
i=1 p(yi|x)p(x)

p(y1:n)
,

when y1, . . . , yn are conditionally independent given x.

61

Metropolis-Hastings
Bayesian inference with MH

We write

p(x|y1:n) ∝
n∏

i=1

p(yi|x)p(x),

and set

γ(x) =

n∏
i=1

p(yi|x)p(x),

as our unnormalised posterior.

62

Metropolis-Hastings
Bayesian inference with MH

The generic MH for Bayesian inference, given xn−1

▶ Sample X ′ ∼ q(x′|xn−1).
▶ Accept xn = x′ with probability

α(xn−1, x
′) = min

{
1,

γ(x′)q(xn−1|x′)
γ(xn−1)q(x′|xn−1)

}
.

▶ Otherwise, Xn = xn−1.

63

Metropolis-Hastings
Example: Source localisation

Recall our example about localising a source using observations from
a sensor network.

We can now formalise this problem. Assume that the source is lo-
cated at x ∈ R2 and the sensor network is located at s1, . . . , s3 ∈ R2

(3 sensors).

Assume that these three sensors ”observe” the source according to:

p(yi|x, si) = N (yi; ∥x− si∥, R),

where yi is the observation from sensor i.

64

Metropolis-Hastings
Example: Source localisation

1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure: Source localisation

65

Metropolis-Hastings
Example: Source localisation

Assume that you are asked to estimate the location of the source
given the observations y1, y2, y3. What is the model?

We first need a prior on the source location:

p(x) = N (x;µ,Σ),

where µ is the prior mean and Σ is the prior covariance. We already
have the likelihoods for each yi.

66

Metropolis-Hastings
Example: Source localisation

Assume that you are asked to estimate the location of the source
given the observations y1, y2, y3. What is the model?

We first need a prior on the source location:

p(x) = N (x;µ,Σ),

where µ is the prior mean and Σ is the prior covariance. We already
have the likelihoods for each yi.

66

Metropolis-Hastings
Example: Source localisation

The posterior is given by

p(x|y1, y2, y3, s1, s2, s3) ∝ p(x)

3∏
i=1

p(yi|x, si).

67

Metropolis-Hastings
Example: Source localisation

We choose a random walk proposal:

q(x′|x) = N (x′;x, σ2I).

This is symmetric so the acceptance ratio is:

r(x, x′) =
p(x′)p(y1|x′, s1)p(y2|x′, s2)p(y3|x′, s3)
p(x)p(y1|x, s1)p(y2|x, s2)p(y3|x, s3)

.

68

Metropolis-Hastings
The banana density

Consider the 2D density

p(x, y) ∝ exp

(
−x2

10
− y4

10
− 2(y − x2)2

)
.

Assume we would like to sample from it.

69

Metropolis-Hastings
The banana density

4 2 0 2 42

0

2

4

6 Target Distribution

4 2 0 2 42

0

2

4

6 Random Walk Metropolis

Figure: The banana density (unnormalised)

70

Metropolis-Hastings
The banana density

We have

γ(x, y) = exp

(
−x2

10
− y4

10
− 2(y − x2)2

)
.

and let us choose two alternative proposals
▶ The random walk proposal:

q(x′, y′|x, y) = N (x′;x, σ2
q)N (y′; y, σ2

q).

▶ and the gradient-based proposal (MALA):

q(x′, y′|x, y) = N (z; z + γ∇ log γ(z),
√
2γI).

where z = (x, y) and γ is a step size.

71

We have seen Metropolis-Hastings sampler.

▶ Unfortunately, it may not be very efficient.
▶ Acceptance ratios are very tricky to compute in a variety of

settings:
▶ High-dimensional problems
▶ Complex models
▶ Large datasets

▶ We will now look at a different approach: Langevin MCMC.

72

We have seen Metropolis-Hastings sampler.
▶ Unfortunately, it may not be very efficient.

▶ Acceptance ratios are very tricky to compute in a variety of
settings:
▶ High-dimensional problems
▶ Complex models
▶ Large datasets

▶ We will now look at a different approach: Langevin MCMC.

72

We have seen Metropolis-Hastings sampler.
▶ Unfortunately, it may not be very efficient.
▶ Acceptance ratios are very tricky to compute in a variety of

settings:

▶ High-dimensional problems
▶ Complex models
▶ Large datasets

▶ We will now look at a different approach: Langevin MCMC.

72

We have seen Metropolis-Hastings sampler.
▶ Unfortunately, it may not be very efficient.
▶ Acceptance ratios are very tricky to compute in a variety of

settings:
▶ High-dimensional problems

▶ Complex models
▶ Large datasets

▶ We will now look at a different approach: Langevin MCMC.

72

We have seen Metropolis-Hastings sampler.
▶ Unfortunately, it may not be very efficient.
▶ Acceptance ratios are very tricky to compute in a variety of

settings:
▶ High-dimensional problems
▶ Complex models

▶ Large datasets

▶ We will now look at a different approach: Langevin MCMC.

72

We have seen Metropolis-Hastings sampler.
▶ Unfortunately, it may not be very efficient.
▶ Acceptance ratios are very tricky to compute in a variety of

settings:
▶ High-dimensional problems
▶ Complex models
▶ Large datasets

▶ We will now look at a different approach: Langevin MCMC.

72

We have seen Metropolis-Hastings sampler.
▶ Unfortunately, it may not be very efficient.
▶ Acceptance ratios are very tricky to compute in a variety of

settings:
▶ High-dimensional problems
▶ Complex models
▶ Large datasets

▶ We will now look at a different approach: Langevin MCMC.

72

Langevin-based approaches
Crash course on Langevin SDE - I

Consider the Langevin SDE for a generic drift ∇V :

dXt = −∇V (Xt)dt+
√
2dBt,

where (Bt)t≥0 is a Brownian motion.

This SDE has a stationary
measure

π ∝ e−V (x).

Therefore, for a classical sampling problem for, say π(x), we could
set V (x) = − log π(x) (negative density).

This diffusion converges to its stationary measure exponentially fast
if V is µ-strongly-convex.

73

Langevin-based approaches
Crash course on Langevin SDE - I

Consider the Langevin SDE for a generic drift ∇V :

dXt = −∇V (Xt)dt+
√
2dBt,

where (Bt)t≥0 is a Brownian motion. This SDE has a stationary
measure

π ∝ e−V (x).

Therefore, for a classical sampling problem for, say π(x), we could
set V (x) = − log π(x) (negative density).

This diffusion converges to its stationary measure exponentially fast
if V is µ-strongly-convex.

73

Langevin-based approaches
Crash course on Langevin SDE - I

Consider the Langevin SDE for a generic drift ∇V :

dXt = −∇V (Xt)dt+
√
2dBt,

where (Bt)t≥0 is a Brownian motion. This SDE has a stationary
measure

π ∝ e−V (x).

Therefore, for a classical sampling problem for, say π(x), we could
set V (x) = − log π(x) (negative density).

This diffusion converges to its stationary measure exponentially fast
if V is µ-strongly-convex.

73

Langevin-based approaches
Crash course on Langevin SDE - II – Optimisation

Consider the Langevin SDE for a generic drift ∇V :

dXt = −∇V (Xt)dt+

√
2

β
dBt,

where (Bt)t≥0 is a Brownian motion.

This SDE has a stationary
measure

π ∝ e−βV (x).

This stationary measure concentrates on the minima of V as β → ∞
(Hwang, 1980).

Langevin diffusion is a global optimiser.

74

Langevin-based approaches
Crash course on Langevin SDE - II – Optimisation

Consider the Langevin SDE for a generic drift ∇V :

dXt = −∇V (Xt)dt+

√
2

β
dBt,

where (Bt)t≥0 is a Brownian motion. This SDE has a stationary
measure

π ∝ e−βV (x).

This stationary measure concentrates on the minima of V as β → ∞
(Hwang, 1980).

Langevin diffusion is a global optimiser.

74

Langevin-based approaches
Crash course on Langevin SDE - II – Optimisation

Consider the Langevin SDE for a generic drift ∇V :

dXt = −∇V (Xt)dt+

√
2

β
dBt,

where (Bt)t≥0 is a Brownian motion. This SDE has a stationary
measure

π ∝ e−βV (x).

This stationary measure concentrates on the minima of V as β → ∞
(Hwang, 1980).

Langevin diffusion is a global optimiser.

74

Langevin-based approaches
Crash course on Langevin SDE - II – Optimisation

Consider the Langevin SDE for a generic drift ∇V :

dXt = −∇V (Xt)dt+

√
2

β
dBt,

where (Bt)t≥0 is a Brownian motion. This SDE has a stationary
measure

π ∝ e−βV (x).

This stationary measure concentrates on the minima of V as β → ∞
(Hwang, 1980).

Langevin diffusion is a global optimiser.

74

Langevin-based approaches
Crash course on Langevin SDE - III: Numerical discretisation

The Euler discretisation is the unadjusted Langevin algorithm (ULA):

Xγ
t+1 = Xγ

t − γ∇V (Xγ
t) +

√
2γWt+1

where (Wt)t≥0 are i.i.d standard Normal random variables.

This chain has a different stationary measure πγ but a number of
guarantees can be derived for its convergence.

Theorem 1 (Durmus and Moulines, 2019)

Let L(Xt) be the law of the iterates of ULA, then

W 2
2 (L(X

γ
t), π) ≲

(
1− γκ

2

)t+1
(d/m+ ∥x− x⋆∥2) + γ,

under suitable regularity conditions for V , restriction on γ where
κ := κ(m,L).

75

Langevin-based approaches
Crash course on Langevin SDE - III: Numerical discretisation

The Euler discretisation is the unadjusted Langevin algorithm (ULA):

Xγ
t+1 = Xγ

t − γ∇V (Xγ
t) +

√
2γWt+1

where (Wt)t≥0 are i.i.d standard Normal random variables.

This chain has a different stationary measure πγ but a number of
guarantees can be derived for its convergence.

Theorem 1 (Durmus and Moulines, 2019)

Let L(Xt) be the law of the iterates of ULA, then

W 2
2 (L(X

γ
t), π) ≲

(
1− γκ

2

)t+1
(d/m+ ∥x− x⋆∥2) + γ,

under suitable regularity conditions for V , restriction on γ where
κ := κ(m,L).

75

Langevin-based approaches
ULA for Bayesian inference

An important note here is that, we can sample from the posterior
p(x|y) using ULA as

p(x|y) ∝ p(x, y),

and

Xγ
n+1 = Xγ

n + γ∇ log p(Xγ
n , y) +

√
2γWn+1.

We can see that this algorithm would approximately sample from
p(x|y).

76

Langevin-based approaches
ULA for Bayesian inference

An important note here is that, we can sample from the posterior
p(x|y) using ULA as

p(x|y) ∝ p(x, y),

and

Xγ
n+1 = Xγ

n + γ∇ log p(Xγ
n , y) +

√
2γWn+1.

We can see that this algorithm would approximately sample from
p(x|y).

76

Langevin-based approaches
ULA for Bayesian inference

Let us say we have data y1, . . . , yM for M large. We can write the
posterior as

p(x|y1:M) ∝ p(x)

M∏
i=1

p(yi|x).

therefore, our potential becomes

V (x) = − log p(x)−
M∑
i=1

log p(yi|x).

Mini-quiz: What is the problem with MALA (or MH in general) in
this case?

77

Langevin-based approaches
ULA for Bayesian inference

Let us say we have data y1, . . . , yM for M large. We can write the
posterior as

p(x|y1:M) ∝ p(x)

M∏
i=1

p(yi|x).

therefore, our potential becomes

V (x) = − log p(x)−
M∑
i=1

log p(yi|x).

Mini-quiz: What is the problem with MALA (or MH in general) in
this case?

77

Langevin-based approaches
ULA for Bayesian inference

A similar problem of course would be for ULA.

However, we can resolve this, as we can approximate the gradient
using subsampling:

∇V (x) = ∇ log p(x) +
M∑
i=1

∇ log p(yi|x),

≈ ∇ log p(x) +
M

m

m∑
j=1

∇ log p(ykj |x) = ∇̂V (x),

where kj ∼ Unif{1, . . . ,M}, for j = 1, . . . ,m for m ≪ M .

Stochastic gradients.

78

Langevin-based approaches
ULA for Bayesian inference

A similar problem of course would be for ULA.

However, we can resolve this, as we can approximate the gradient
using subsampling:

∇V (x) = ∇ log p(x) +

M∑
i=1

∇ log p(yi|x),

≈ ∇ log p(x) +
M

m

m∑
j=1

∇ log p(ykj |x) = ∇̂V (x),

where kj ∼ Unif{1, . . . ,M}, for j = 1, . . . ,m for m ≪ M .

Stochastic gradients.

78

Langevin-based approaches
ULA for Bayesian inference

A similar problem of course would be for ULA.

However, we can resolve this, as we can approximate the gradient
using subsampling:

∇V (x) = ∇ log p(x) +

M∑
i=1

∇ log p(yi|x),

≈ ∇ log p(x) +
M

m

m∑
j=1

∇ log p(ykj |x) = ∇̂V (x),

where kj ∼ Unif{1, . . . ,M}, for j = 1, . . . ,m for m ≪ M .

Stochastic gradients.

78

Langevin-based approaches
ULA for Bayesian inference

One can run ULA with stochastic gradients:

Xγ
n+1 = Xγ

n − γ ̂∇V (Xγ
n) +

√
2γWn+1.

The resulting method is called stochastic gradient Langevin dynamics
(SGLD) (Welling and Teh, 2011).
▶ Widely used for large-scale datasets.
▶ It has similar guarantees to ULA in Wasserstein-2 distance for

strongly convex V .
▶ Also used to model and analyse the behaviour of stochastic

gradient descent methods (SGD) in deep learning.
Web based simulations if time permits.

79

Langevin-based approaches
ULA for Bayesian inference

One can run ULA with stochastic gradients:

Xγ
n+1 = Xγ

n − γ ̂∇V (Xγ
n) +

√
2γWn+1.

The resulting method is called stochastic gradient Langevin dynamics
(SGLD) (Welling and Teh, 2011).

▶ Widely used for large-scale datasets.
▶ It has similar guarantees to ULA in Wasserstein-2 distance for

strongly convex V .
▶ Also used to model and analyse the behaviour of stochastic

gradient descent methods (SGD) in deep learning.
Web based simulations if time permits.

79

Langevin-based approaches
ULA for Bayesian inference

One can run ULA with stochastic gradients:

Xγ
n+1 = Xγ

n − γ ̂∇V (Xγ
n) +

√
2γWn+1.

The resulting method is called stochastic gradient Langevin dynamics
(SGLD) (Welling and Teh, 2011).
▶ Widely used for large-scale datasets.

▶ It has similar guarantees to ULA in Wasserstein-2 distance for
strongly convex V .

▶ Also used to model and analyse the behaviour of stochastic
gradient descent methods (SGD) in deep learning.

Web based simulations if time permits.

79

Langevin-based approaches
ULA for Bayesian inference

One can run ULA with stochastic gradients:

Xγ
n+1 = Xγ

n − γ ̂∇V (Xγ
n) +

√
2γWn+1.

The resulting method is called stochastic gradient Langevin dynamics
(SGLD) (Welling and Teh, 2011).
▶ Widely used for large-scale datasets.
▶ It has similar guarantees to ULA in Wasserstein-2 distance for

strongly convex V .

▶ Also used to model and analyse the behaviour of stochastic
gradient descent methods (SGD) in deep learning.

Web based simulations if time permits.

79

Langevin-based approaches
ULA for Bayesian inference

One can run ULA with stochastic gradients:

Xγ
n+1 = Xγ

n − γ ̂∇V (Xγ
n) +

√
2γWn+1.

The resulting method is called stochastic gradient Langevin dynamics
(SGLD) (Welling and Teh, 2011).
▶ Widely used for large-scale datasets.
▶ It has similar guarantees to ULA in Wasserstein-2 distance for

strongly convex V .
▶ Also used to model and analyse the behaviour of stochastic

gradient descent methods (SGD) in deep learning.

Web based simulations if time permits.

79

Langevin-based approaches
ULA for Bayesian inference

One can run ULA with stochastic gradients:

Xγ
n+1 = Xγ

n − γ ̂∇V (Xγ
n) +

√
2γWn+1.

The resulting method is called stochastic gradient Langevin dynamics
(SGLD) (Welling and Teh, 2011).
▶ Widely used for large-scale datasets.
▶ It has similar guarantees to ULA in Wasserstein-2 distance for

strongly convex V .
▶ Also used to model and analyse the behaviour of stochastic

gradient descent methods (SGD) in deep learning.
Web based simulations if time permits.

79

References I

Li, Bo, Thomas Bengtsson, and Peter Bickel (2005). “Curse-of-
dimensionality revisited: Collapse of importance sampling in very
large scale systems”. In: Rapport technique 85, p. 205.
Hwang, Chii-Ruey (1980). “Laplace’s method revisited: weak con-
vergence of probability measures”. In: The Annals of Probability,
pp. 1177–1182.
Durmus, Alain and Eric Moulines (2019). “High-dimensional Bayesian
inference via the unadjusted Langevin algorithm”. In: Bernoulli
25.4A, pp. 2854–2882.
Welling, Max and Yee W Teh (2011). “Bayesian learning via stochas-
tic gradient Langevin dynamics”. In: Proceedings of the 28th in-
ternational conference on machine learning (ICML-11), pp. 681–
688.

80

	References

