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Computational Statistics
What is going to (roughly) happen in this course?

This course will teach you how to simulate (pseudo) random numbers
that attain certain statistical properties.

This course will also teach you how to estimate certain quantities of
interest using these random numbers.
▶ Expectations with respect to intractable distributions
▶ Tail probabilities
▶ Sampling from posterior distributions of Bayesian models
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Computational Statistics
What is going to (roughly) happen in this course?

The first focus will be on independent exact sampling methods.

▶ We will discuss and design algorithms that sample directly from
basic distributions, such as
▶ Uniform distribution
▶ Gaussian distribution
▶ Exponential distribution

and others.
These random number generation techniques are at the core of many
fields, e.g., statistical inference and generative models.
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Computational Statistics
What is going to (roughly) happen in this course?

Then, we will move on to Monte Carlo integration and Markov chain
Monte Carlo methods:

▶ Importance sampling
▶ Sampling from intractable distributions by forming Markov chains

and targeting them
▶ Computation of integrals, expectations

Then finally, we will finalize with sequential Monte Carlo (if time
permits).
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Computational Statistics
Motivation - why?

In computational Bayesian statistics, we are interested in synthesising
the model and the data (among other things).

One very effective way is to use Bayesian statistical methodology.

For this, we are often interested in sampling from posterior distribu-
tions of the form

p(x|y) ∝ p(y|x)π(x), (1)

and estimating expectations w.r.t. them.
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Computational Statistics
Generative models

In this case, we have samples {Yi}ni=1 from a dataset. Underlying
data distribution Yi ∼ pdata is not accessible in any way.

Goal: Sample from pdata by only accessing data {Yi}ni=1.
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Computational Statistics
Generative models

The standard way to do it is to run forward and backward stochastic
differential equations1

1Figure from: https://yang-song.net/blog/2021/score/
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In summary, this course can be immensely useful for you to go into
any of these areas.

We will balance computation and theory for practical and conceptual
understanding.

Let’s get to our first motivating example.

9



In summary, this course can be immensely useful for you to go into
any of these areas.

We will balance computation and theory for practical and conceptual
understanding.

Let’s get to our first motivating example.

9



In summary, this course can be immensely useful for you to go into
any of these areas.

We will balance computation and theory for practical and conceptual
understanding.

Let’s get to our first motivating example.

9



Estimating π

In this course, a core focus will be estimating certain quantities (prob-
abilities, expectations, etc.) using sampling.

Sampling here means random variate generation.

Let’s try to solve a simple problem to illustrate the methodology:
Estimating π.

Can we estimate π using sampling? Any ideas?
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Estimating π

Given the knowledge that:

area of circle
area of square

=
πr2

4r2
=

π

4
.

Can we phrase this question probabilistically?
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Estimating π

What does this mean?
▶ Write down the estimation problem as

▶ a probability (of a set)
▶ an expectation

Most of the time, expectation is the most general way.
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Estimating π

Consider a 2D uniform distribution on [−1, 1]× [−1, 1].

▶ The ’probability’ of the square (whole space) is 1.
▶ The ’probability of the circle’ (set) is precisely the ratio of areas.

P(Circle) =
π

4
.
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Estimating π

Last question:

Can we estimate the probability of this set, if we had access to
samples from Unif([−1, 1]× [−1, 1])?
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Estimating π
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Perfect Monte Carlo

We have used here the most basic idea of estimating an integral (we
will clarify shortly).

Consider now a target measure π(x)dx3 and a function φ(x). If we
have access to i.i.d samples from Xi ∼ π(x), then

(φ, π) :=

∫
φ(x)π(x)dx ≈ 1

N

N∑
i=1

φ(Xi),

using a particle approximation

πN (dx) =
1

N

N∑
i=1

δXi(dx).

3This is different from π the number!
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Perfect Monte Carlo

Note by definition of the Dirac measure

φ(y) =

∫
φ(x)δy(dx).

Therefore, given the approximation πN (dx) = 1
N

∑N
i=1 δXi(dx), we

have

(φ, π) ≈ (φ, πN ) =

∫
φ(x)

1

N

N∑
i=1

δXi(dx) =
1

N

N∑
i=1

φ(Xi).
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Estimating π
Special case

Let X = [−1, 1]× [−1, 1] and define the uniform measure such that
P(X) = 1.

Let A be the “circle” s.t. A ⊂ X. Now, the probability of A is given

P(A) =
∫
A
P(dx)

=

∫
1A(x)P(dx),

≈ 1

N

N∑
i=1

1A(xi) →
π

4
as N → ∞.

where xi ∼ P.
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Monte Carlo methods

In general, we will be interested in sampling from general (unnormal-
ized) distributions:

π(x) ∝ γ(x)

Z
,

where Z =
∫
γ(x)dx is the normalizing constant. Our general aim

throughout this course is to compute

(φ, π) =

∫
φ(x)π(x)dx,

for φ : X → R a measurable function. φ(x) = xn for moments,
φ(x) = 1A(x) for probabilities... In Bayesian inference

γ(x) = p(y|x)p(x),

19



Perfect Monte Carlo

An estimator of the form

(φ, πN ) =
1

N

N∑
i=1

φ(Xi),

is desirable.

Because
▶ The estimator is unbiased E[(φ, πN )] = (φ, π).
▶ The variance of this estimator is

var((φ, πN )) =
1

N
var(φ(X)),

which is decreasing in N .
▶ Strong LLN holds

(φ, πN ) → (φ, π) a.s. as N → ∞.

▶ CLT holds
√
N

(
(φ, πN )− (φ, π)

)
→ N (0, σ2(φ, π)) as N → ∞.
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Perfect Monte Carlo

In terms of theoretical guarantees, we will favor Lp bounds, i.e., for
perfect MC, one can show that

∥(φ, π)− (φ, πN )∥p ≤
cp∥φ∥∞√

N
,

for bounded test functions φ, i.e., ∥φ∥∞ < ∞.

We are mostly interested in p = 2 case, which is square root of the
MSE in general.
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In order to perform perfect and approximate Monte Carlo integration,
we need to be able to generate random variables from distributions.

Next up: Pseudo uniform random number generation.
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What are pseudo-random numbers?

X(i) ∼ π(x)
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What are pseudo-random numbers?
Why do we need them?

It is (literally) impossible to generate genuinely random numbers on
computers.

▶ You can flip a coin every time you need a binary number
▶ Is it really unbiased though?4

▶ Throw a die
What other things can give you a truly random number?
▶ You can use www.random.org
▶ On a computer

▶ Try to measure some inner thermal noise (of circuits)
▶ Measure atmospheric noise

As you can see, these are not very practical.

4Diaconis, P., Holmes, S., & Montgomery, R. (2007). Dynamical bias in the
coin toss. SIAM review, 49(2), 211-235.
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What are pseudo-random numbers?
Why do we need them?

If we want to simulate randomness, we need to obtain a way that is

▶ Repeatable
▶ Cheap

It has become an entire research topic to design deterministic algo-
rithms which gives samples that match the desired characteristics.

We will start from the simplest: The uniform distribution.
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Uniform pseudo-random numbers

The key to simulate many (many) other random variables is to be
able to simulate uniform random numbers.

We denote the task

U ∼ Unif(u; 0, 1).

More precisely

U ∼ p(u) = 1 for 0 ≤ u ≤ 1.

We will look into an old way of doing it:
▶ Linear congruential random number generators

These methods are based on generating a deterministic linear recur-
sion with a careful design 5.

5Note that current state-of-the-art is not based on this.
26
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Uniform pseudo-random numbers

Linear congruential generators (LCGs from now on) are based on
simulating a recursion:

xn+1 ≡ axn + b (mod m)

where x0 is the seed, m is the modulus, b is the shift, and a is the
multiplier.

▶ m is an integer
▶ x0, a, b ∈ {0, . . . ,m− 1}.

Given xn ∈ {0, . . . ,m−1}, we generate the uniform random numbers

un =
xn
m

∈ [0, 1) ∀n.
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Uniform pseudo-random numbers

Example code (try and make it work!)

import numpy as np
import matplotlib.pyplot as plt

def lcg(a, b, m, n, x0):
x = np.zeros(n)
u = np.zeros(n)
x[0] = x0
u[0] = x0 / m
for k in range(1, n):

x[k] = (a * x[k - 1] + b) % m
u[k] = x[k] / m

return u

28



Uniform pseudo-random numbers

A few things to know about LCGs:
▶ They generate periodic sequences.

0 200 400 600 800 1000
k

0.0

0.2

0.4

0.6

0.8

1.0
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0.0 0.2 0.4 0.6 0.8 1.0
0.0
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0.6

0.8
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Histogram

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4
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0.8

1.0

uk+ 1 vs uk

Figure: m = 2048, a = 43, b = 0, x0 = 1.

period T ≤ m (m: the modulus).
▶ Full period: T = m

Choice of good parameters rely on some theory, some art.
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Uniform pseudo-random numbers

Wikipedia has a list of parameters for professional implementations:

from: https://en.wikipedia.org/wiki/Linear_congruential_generator

30
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Uniform pseudo-random numbers

Better parameters:
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Going forward, we will mostly assume that we will have access to a
uniform random number generator.

▶ When implementing U ∼ Unif(0, 1), you can instead use

rng.uniform(0, 1, n)

where n is the number of samples you want to draw and rng is
appropriately initialised random number generator.

Next up: Exact sampling methods
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We will cover methods to sample more general nonuniform π(x):
▶ Inversion method

▶ Transformation method
▶ Rejection method

Next up: Sampling via inversion.
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Exact sampling of distributions
How to simulate from any π(x)?

Simulating from a given π(x) is an endless research area (simulation,
sampling, generative models) and still flourishing.

We will start by describing some general methods to sample from
more general distributions.
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Direct sampling of distributions
Inversion
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Direct sampling of distributions
Inversion

The inversion technique is based on the following theorem (Theo-
rem 2.1 of notes):

Theorem 1
Consider a random variable X with a CDF FX . Then the random
variable F−1

X (U) where U ∼ Unif(0, 1), has the same distribution as
X.

Proof.
The proof is one line:

P(F−1
X (U) ≤ x) = P(U ≤ FX(x)) = FX(x).

which is the CDF of the target distribution. ■
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Exact sampling of distributions
Inversion

Note that above result is written for the case where F−1
X exists, i.e.,

the CDF is continuous. If this is not the case, one can define the
generalised inverse function,

F−
X (u) = min{x : FX(x) ≥ u}.
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Exact sampling of distributions
Inversion

Going back to statement: If U ∼ Unif(0, 1) then X ′ = F−1
X (U) has

the desired distribution, i.e.,

X ′ ∼ pX(x).

Then this suggests an algorithm:
▶ Sample U ∼ Unif([0, 1]),
▶ Draw X = F−1

X (U).
Of course, this is limited to the cases where we can invert the CDF.
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Exact sampling of distributions
Inversion: Discrete (categorical) distribution

Let us consider some examples.

The most generic one is the discrete (categorical) distribution. For
K ≥ 1 (integer), define K states s1, . . . , sK where

p(sk) ∈ [0, 1] where
K∑
k=1

p(sk) = 1.

Simpler than it looks, consider the die:

sk = k (the face of die)

and their probabilities

p(sk) = 1/6.
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Exact sampling of distributions
Inversion: Discrete (categorical) distribution

How does the sampling work?

0.2

0.4

0.6

0.8

1

1 2 3 4

PMF p

CDF F

U ∼ Unif(0, 1)

▶ Draw U ∼ Unif(0, 1)
▶ Choose F−

X (u) = min{x : FX(x) ≥ u}

generic for discrete dist.
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Exact sampling of distributions
Inversion: Discrete (categorical) distribution

import numpy as np
import matplotlib.pyplot as plt

w = np.array([0.2, 0.3, 0.4, 0.1]) # pmf
s = np.array([1, 2, 3, 4]) # support (states)

def discrete_cdf(w):
return np.cumsum(w)

cw = discrete_cdf(w)

def plot_discrete_cdf(w, cw):
fig , ax = plt.subplots(1, 2, figsize=(20, 5))
ax[0].stem(s, w)
ax[1].plot(s, cw , ’o-’, drawstyle=’steps -post’)
plt.show()

plot_discrete_cdf(w, cw)

see simulation.
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Exact sampling of distributions
Inversion: Exponential distribution

The exponential density

π(x) = Exp(x;λ) = λe−λx.

for x ≥ 0. Otherwise π(x) = 0.

0 1 2 3 4 5
x

0

1

2

3

4

5

p(
x)

 = 0.1
 = 0.2
 = 0.5
 = 0.8
 = 1
 = 1.2
 = 1.6
 = 2
 = 5
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Exact sampling of distributions
Inversion: Exponential distribution

π(x) = Exp(x;λ) = λe−λx.

We calculate the CDF

FX(x) =

∫ x

0
π(x′)dx′,

= λ

∫ x

0
e−λx′

dx′,

= λ

[
− 1

λ
e−λx′

]x
x′=0

= 1− e−λx.
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Exact sampling of distributions
Inversion: Exponential distribution

Deriving the inverse:

u = 1− e−λx

=⇒ x = − 1

λ
log(1− u)

=⇒ F−1
X (u) = −λ−1 log(1− u).

So what is the algorithm?
▶ Generate ui ∼ Unif([0, 1])
▶ xi = −λ−1 log(1− ui).

Simulation.
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Exact sampling of distributions
Inversion: Is Gaussian possible?

Let π(x) = N (x;µ, σ2). Can we use inversion?

No. F−1
X is impossible to compute and hard to approximate.
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Exact sampling of distributions
Transformation method

Inversion is a special case of a general method called transformation
method.

Transformation method:
▶ Sample Ui ∼ Unif(u; 0, 1)
▶ Transform: Xi = g(Ui).

Inversion is just setting g = F−1
X .
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Exact sampling of distributions
Transformation method: Sampling a custom uniform

The simplest example can be seen from sampling a uniform on [a, b]
using a uniform on [0, 1].

▶ Draw Ui ∼ Unif(u; 0, 1)
▶ Set Xi = g(Ui) = (b− a)Ui + a

then Xi ∼ Unif(x; a, b).

For general g, how do we compute the density?
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Exact sampling of distributions
Transformation method

If X ∼ pX(x) and Y = g(X), what is pY (y)?

pY (y) = pX(g−1(y))
∣∣det Jg−1(y)

∣∣
where J is the Jacobian of the inverse mapping g−1, evaluated at y:

Jg−1 =

∂g
−1
1 /∂y1 ∂g1

−1/∂y2 · · · ∂g−1
1 /∂yn

... · · · · · ·
...

∂g−1
n /∂y1 ∂gn

−1/∂y2 · · · ∂g−1
n /∂yn

 .
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Exact sampling of distributions
Transformation method: An exercise

If X ∼ N (0, 1), derive the distribution of

Y = σX + µ.
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Exact sampling of distributions
Transformation method: An exercise

The inverse transform is:

g−1(y) =
y − µ

σ
.

Therefore,

pY (y) = pX(g−1(y))

∣∣∣∣dg−1

dy

∣∣∣∣ ,
which is

pY (y) =
1√
2π

exp(−(y − µ)2

2σ2
)
1

σ
= N (µ, σ2)
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How to sample Gaussians from uniforms?

Finally, we provide the Box-Müller method for Gaussians: Let U1, U2 ∼
Unif(0, 1) be independent. Then

Z1 =
√

−2 logU1 cos(2πU2),

Z2 =
√

−2 logU1 sin(2πU2),

are independent N (0, 1)-distributed random variables.
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Next step?
Follow von Neumann

Rejection sampling

52



Recap: We have seen

▶ Uniform random variate generation
▶ Direct sampling from variety of distributions

▶ Inversion method
▶ Draw U ∼ Unif(0, 1)
▶ Compute X = F−(U) = min{x : FX(x) ≥ u}

▶ Transformation method.
▶ Draw U ∼ Unif(0, 1),
▶ Obtain X = g(U) for some general transformation g.

However, those methods required a quite specific structure for us to
be able to sample.
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What if inverse of CDF or a nice transformation is not available?

What if we cannot evaluate π(x) – only evaluate an unnormalised
density γ(x) where

π(x) =
γ(x)

Z
.

Can we still do exact sampling?
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The Fundamental Theorem of Simulation
Is there a more general structure?

Theorem 2 (Theorem 2.2, Martino et al., 2018)

Drawing samples from one dimensional random variable X with a
density γ(x) ∝ π(x) is equivalent to sampling uniformly on the two
dimensional region defined by

A = {(x, y) ∈ R2 : 0 ≤ y ≤ γ(x)}. (2)

In other words, if (x′, y′) is uniformly distributed on A, then x′ is a
sample from π(x).
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Sampling Beta density
Testing the theorem

Let

π(x) = Beta(α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1,

where Γ(n) = (n− 1)! for integers. For Beta(2, 2):

Its maximum is 1.5 in this specific case. Can we sample uniformly?

▶ Sample from the box [0, 1]× [0, 1.5] and keep the ones inside.
▶ Note though our aim is to ‘test the x-marginal’
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Sampling Beta density
Testing the theorem

See simulation.
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Note the key aspects:

▶ We have not used any inverse CDF or transformation but
▶ We have used the expression of π(x)

We can get away with an unnormalised density γ(x) (as FTS sug-
gests).
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Rejection sampling
More than a box

Using a box wrapping the density is very inefficient:

▶ You need the maximum of the density

p⋆ = maxπ(x)

which could be as hard as the sampling problem!
▶ For densities that are peaky, this could be wildly inefficient

Idea: Design a proposal density that tightly wraps the target density

59



Rejection sampling
More than a box

Using a box wrapping the density is very inefficient:
▶ You need the maximum of the density

p⋆ = maxπ(x)

which could be as hard as the sampling problem!

▶ For densities that are peaky, this could be wildly inefficient

Idea: Design a proposal density that tightly wraps the target density

59



Rejection sampling
More than a box

Using a box wrapping the density is very inefficient:
▶ You need the maximum of the density

p⋆ = maxπ(x)

which could be as hard as the sampling problem!
▶ For densities that are peaky, this could be wildly inefficient

Idea: Design a proposal density that tightly wraps the target density

59



Rejection sampling
More than a box

Using a box wrapping the density is very inefficient:
▶ You need the maximum of the density

p⋆ = maxπ(x)

which could be as hard as the sampling problem!
▶ For densities that are peaky, this could be wildly inefficient

Idea: Design a proposal density that tightly wraps the target density

59



Rejection sampling
Choice of the proposal

Consider a (target) density π(x) and a proposal density q(x).

For rejection sampling, we always choose a proposal such that

π(x) ≤ Mq(x),

for M ≥ 1. Intuitively, the Mq(x) curve should be above π(x).
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Rejection sampling
The algorithm

But how to obtain a sample under the curve?

We can do
▶ Sample x′ ∼ q(x)

▶ Sample u′ ∼ Unif(u′; 0,Mq(x′))

▶ Accept if

u′ ≤ π(x′),

This would give us (x′, u′) uniformly under the curve (hence x′ sam-
ples would be distributed w.r.t. π(x))
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Rejection sampling
The algorithm: A closer look

To implement the method:
▶ Sample x′ ∼ q(x),

▶ Sample u ∼ Unif(u; 0, 1)
▶ Accept if

u ≤ π(x′)

Mq(x′)
.

62



Rejection sampling
The algorithm: A closer look

To implement the method:
▶ Sample x′ ∼ q(x),
▶ Sample u ∼ Unif(u; 0, 1)

▶ Accept if

u ≤ π(x′)

Mq(x′)
.

62



Rejection sampling
The algorithm: A closer look

To implement the method:
▶ Sample x′ ∼ q(x),
▶ Sample u ∼ Unif(u; 0, 1)
▶ Accept if

u ≤ π(x′)

Mq(x′)
.

62



Rejection sampling
The algorithm

The rejection sampler:

▶ X ′ ∼ q(x),
▶ Accept the sample X ′ with probability

a(X ′) =
π(X ′)

Mq(X ′)
≤ 1.
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We have seen that rejection sampling works for general densities but
requires the evaluation of π(x).

In many (many) cases, we cannot evaluate π(x)!

Luckily, we can evaluate π(x) up to a normalising constant:

π(x) =
γ(x)

Z
.

Note the terminology and convention:
▶ γ(x) is called the unnormalised density
▶ Z is called the normalising constant

▶ It is a super important quantity for many other purposes

▶ We write π(x) ∝ γ(x) to say p is proportional to γ(x) but
normalised to integrate (or sum) to one.
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Rejection sampling
The algorithm: A closer look

To implement, choose M and q such that γ(x) ≤ Mq(x)

▶ Sample x′ ∼ q(x),

▶ Sample u ∼ Unif(u; 0, 1)
▶ Accept if

u ≤ γ(x′)

Mq(x′)
.

Exactly same – γ used instead of p provided that γ(x) ≤ Mq(x)
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Rejection sampling
Examples: Acceptance matters

Rejection sampler:
▶ Sample x′ ∼ q(x),
▶ Sample u ∼ Unif(u; 0, 1)
▶ Accept if

u ≤ γ(x′)

Mq(x′)
.

In order for this algorithm to be implemented, we do not want many
rejections (as we want many accepted samples to build our distribu-
tion).

How to compute acceptance rate?

66



Rejection sampling
Examples: Acceptance matters

Rejection sampler:
▶ Sample x′ ∼ q(x),
▶ Sample u ∼ Unif(u; 0, 1)
▶ Accept if

u ≤ γ(x′)

Mq(x′)
.

In order for this algorithm to be implemented, we do not want many
rejections (as we want many accepted samples to build our distribu-
tion).

How to compute acceptance rate?

66



Rejection sampling
Examples: Acceptance matters

Rejection sampler:
▶ Sample x′ ∼ q(x),
▶ Sample u ∼ Unif(u; 0, 1)
▶ Accept if

u ≤ γ(x′)

Mq(x′)
.

In order for this algorithm to be implemented, we do not want many
rejections (as we want many accepted samples to build our distribu-
tion).

How to compute acceptance rate?

66



Rejection sampling
Examples: Acceptance matters

Proposition 1

When the target density π(x) is normalised and M is prechosen, the
acceptance rate is given by

â =
1

M
,

where M > 1 in order to satisfy the requirement that q covers π. For
an unnormalised target density γ(x) with the normalising constant
Z =

∫
γ(x)dx, the acceptance rate is given as

â =
Z

M
.
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Rejection sampling
Examples: Same Beta(2, 2), better proposal

Choose

q(x) = N (0.5, 0.25),

with M = 1.3.

Simulation.
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Rejection sampling
Choice of M

A standard choice for M is

M⋆ = sup
x

π(x)

q(x)
.
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Rejection Sampling
Example: Sampling truncated distributions

Given N (x; 0, 1), suppose we are interested in sampling this density
between [−a, a]. We can write this truncated normal density as

π(x) =
γ(x)

Z
=

N (x; 0, 1)1{x:|x|≤a}(x)∫ a
−aN (y; 0, 1)dy

.

We can choose q(x) = N (x; 0, 1) anyway, and we have γ(x) ≤ q(x)
(i.e. we can take M = 1). The resulting algorithm is extremely
intuitive: All you need is to sample from q(x) = N (x; 0, 1) and
reject if this sample is out of bounds [−a, a].
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We have covered the rejection sampler:
▶ Sample X ′ ∼ q(x) = Unif(0, 1)
▶ Sample U ∼ Unif(0, 1)
▶ If U ≤ γ(X ′)/Mq(X ′),

▶ Accept X ′

While very popular in 90s, it is extremely hard to compute M for
modern large scale problems.
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Importance Sampling
Monte Carlo integration

Another popular approach to compute expectations (φ, π) is called
importance sampling.

Assume, as in the rejection sampling case, π is absolutely continuous
w.r.t. q, denoted as π ≪ q, meaning π(x) = 0 =⇒ q(x) = 0.

Then, we can write

(φ, π) =

∫
φ(x)π(dx) =

∫
φ(x)

dπ

dq
(x)q(x)dx.

When π and q admit densities,

(φ, π) =

∫
φ(x)π(x)dx =

∫
φ(x)

π(x)

q(x)
q(x)dx.
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Importance Sampling
Monte Carlo integration

Given

(φ, π) =

∫
φ(x)

π(x)

q(x)
q(x)dx,

we can employ standard Monte Carlo by sampling Xi ∼ q and then
constructing (by setting w = π/q)

(φ, π̃N ) =
1

N

N∑
i=1

φ(Xi)w(Xi),

=
1

N

N∑
i=1

wiφ(Xi).

where wi = w(Xi). We will call this estimator the importance sam-
pling (IS) estimator.
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Importance Sampling
Monte Carlo integration

Mini-quiz: Is this estimator unbiased?

Yes.

Eq[(φ, π̃
N )] = Eq

[
1

N

N∑
i=1

wiφ(Xi)

]
,

=
1

N

N∑
i=1

Eq

[
π(Xi)

q(Xi)
φ(Xi)

]

=
1

N

N∑
i=1

∫
π(x)

q(x)
φ(x)q(x)dx

=

∫
φ(x)π(x)dx = (φ, π).
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Importance Sampling
Monte Carlo integration

What is the variance?

varq[(φ, π̃N )] = varq

[
1

N

N∑
i=1

wiφ(Xi)

]

=
1

N2
varq

[
N∑
i=1

w(Xi)φ(Xi)

]

=
1

N
varq [w(X)φ(X)] where X ∼ q(x)

=
1

N

(
Eq

[
w2(X)φ2(X)

]
− Eq [w(X)φ(X)]2

)
=

1

N

(
Eq

[
w2(X)φ2(X)

]
− φ̄2

)
.
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Importance Sampling
Monte Carlo integration

Finally, the basic IS estimator satisfies the following Lp bound just
like the perfect Monte Carlo

∥(φ, π)− (φ, π̃N )∥p ≤
c̃p∥φ∥∞√

N
,

where c̃p is a constant depending on p and q.
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Importance Sampling
Self-normalised IS

What if we only have access to γ(x) ∝ π(x)?

Assume γ ≪ q and both abs. cont w.r.t. to the Lebesgue measure.
Then we can write

(φ, π) =

∫
φ(x)π(x)dx

=

∫
φ(x)γ(x)q(x) q(x)dx∫ γ(x)

q(x) q(x)dx
.

We can then perform the same Monte Carlo integration idea but now
both for the numerator and denominator.
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Importance Sampling
Self-normalised IS (SNIS)

We have

(φ, π) =

∫
φ(x)π(x)dx

=

∫
φ(x)γ(x)q(x) q(x)dx∫ γ(x)

q(x) q(x)dx
.

Define W (x) = γ(x)/q(x) and the SNIS approximation is given as

(φ, π) =

∫
φ(x)W (x)q(x)dx∫

W (x)q(x)dx
≈

1
N

∑N
i=1 φ(Xi)W (Xi)

1
N

∑N
i=j W (Xj)

.

where Xi ∼ q(x). Let us write Wi = W (Xi) and wi = Wi/
∑N

j=1Wj .
Then the final estimator is

(φ, π̃N ) =

N∑
i=1

wi.φ(Xi)
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Importance Sampling
Self-normalised IS (SNIS)

Mini-quiz: Is this estimator unbiased?

No.

The estimator is a ratio of two unbiased estimators. However, this
ratio is not unbiased.
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Importance Sampling
Self-normalised IS (SNIS)

However, one can prove that

∥(φ, π)− (φ, π̃N )∥p ≤
c̃p∥φ∥∞√

N
,

where c̃p is a constant depending on p and q and φ is bounded.
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Importance Sampling
Self-normalised IS (SNIS)

Theorem 3
The MSE (i.e., set p = 2 and square both sides) is bounded by

E
[(
(φ, π)− (φ, π̃N )

)2] ≤ 4∥φ∥∞ρ

N
,

where

ρ = χ2(π||q) + 1.

Suggests that the discrepancy between π and q controls the MSE.
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Importance Sampling
Self-normalised IS (SNIS), MSE bound

Proof. We first note the following inequalities,

|(φ, π)− (φ, π̃N )| =
∣∣∣∣(φW, q)

(W, q)
− (φW, qN )

(W, qN )

∣∣∣∣
≤

∣∣(φW, q)− (φW, qN )
∣∣

|(W, q)|
+ |(φW, qN )|

∣∣∣∣ 1

(W, q)
− 1

(W, qN )

∣∣∣∣
=

∣∣(φW, q)− (φW, qN )
∣∣

|(W, q)|
+ ∥φ∥∞|(W, qN )|

∣∣∣∣(W, qN )− (W, q)

(W, q)(W, qN )

∣∣∣∣
=

∣∣(φW, q)− (φW, qN )
∣∣

(W, q)
+

∥φ∥∞|(W, qN )− (W, q)|
(W, q)

.
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We take squares of both sides and apply the inequality (a + b)2 ≤
2(a2 + b2) to further bound the rhs,

· · · ≤ 2

∣∣(φW, q)− (φW, qN )
∣∣2

(W, q)2
+ 2

∥φ∥2∞|(W, qN )− (W, q)|2

(W, q)2

We can now take the expectation of both sides,

E
[(
(φ, π)− (φ, π̃N )

)2] ≤
2E

[(
(φW, q)− (φW, qN )

)2]
(W, q)2

+

2∥φ∥2∞E
[(
(W, qN )− (W, q)

)2]
(W, q)2

.

Note that, both terms in the right hand side are perfect Monte Carlo
estimates of the integrals.
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Bounding the MSE of these integrals yields

· · · ≤ 2

N

(φ2W 2, q)− (φW, q)2

(W, q)2
+

2∥φ∥2∞
N

(W 2, q)− (W, q)2

(W, q)2
,

≤ 2∥φ∥2∞
N

(W 2, q)

(W, q)2
+

2∥φ∥2∞
N

(W 2, q)− (W, q)2

(W, q)2
.

Therefore, we can straightforwardly write,

E
[(
(φ, π)− (φ, π̃N )

)2] ≤4∥φ∥2∞
(W, q)2

(W 2, q)

N
.
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E
[(
(φ, π)− (φ, π̃N )

)2] ≤4∥φ∥2∞
(W, q)2

(W 2, q)

N
.

Now it remains to show the relation of the bound to χ2 divergence.
Note that,

(W 2, q)

(W, q)2
=

∫ Π2(x)
q2(x)

q(x)dx(∫ Π(x)
q(x) q(x)dx

)2

=
Z2

∫ π2(x)
q2(x)

q(x)dx

Z2
(∫

πdx
)2

= Eq

[
π2(X)

q2(X)

]
:= ρ.

Note that ρ is not exactly χ2 divergence, which is defined as ρ− 1.
Plugging everything into our bound, we have the result,

E
[(
(φ, π)− (φ, πN )

)2] ≤4∥φ∥2∞ρ

N
.
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Importance Sampling
Optimised Adaptive IS

Moreover, if q is an exponential family, then ρ is convex (Akyildiz and
Míguez, 2021). This suggests that we can optimise q to minimise ρ
and hence the MSE. See Akyildiz and Míguez, 2021 for utilisation of
stochastic convex optimisation techniques to obtain uniform-in-time
bounds for adaptive SNIS.
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See you next week!
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