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Computational Statistics

What is going to (roughly) happen in this course?

This course will teach you how to simulate (pseudo) random numbers
that attain certain statistical properties.

This course will also teach you how to estimate certain quantities of
interest using these random numbers.

> Expectations with respect to intractable distributions
» Tail probabilities

» Sampling from posterior distributions of Bayesian models
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Computational Statistics

What is going to (roughly) happen in this course?

The first focus will be on independent exact sampling methods.

» We will discuss and design algorithms that sample directly from
basic distributions, such as

» Uniform distribution
»  Gaussian distribution
> Exponential distribution

and others.

These random number generation techniques are at the core of many
fields, e.g., statistical inference and generative models.
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Computational Statistics

What is going to (roughly) happen in this course?

Then, we will move on to Monte Carlo integration and Markov chain
Monte Carlo methods:

» Importance sampling

» Sampling from intractable distributions by forming Markov chains
and targeting them

» Computation of integrals, expectations

Then finally, we will finalize with sequential Monte Carlo (if time per-
mits).
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Computational Statistics

Motivation - why?

In computational Bayesian statistics, we are interested in synthesising
the model and the data (among other things).

One very effective way is to use Bayesian statistical methodology.

For this, we are often interested in sampling from posterior distribu-
tions of the form

plxly) o pylx)m (), (1)

and estimating expectations w.r.t. them.
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Computational Statistics

Generative models

In this case, we have samples {Y;}!_; from a dataset. Underlying data
distribution Y; ~ pga, is not accessible in any way.

Goal: Sample from pg,i, by only accessing data {Y;}! .




Computational Statistics

Generative models

The standard way to do it is to run forward and backward stochastic
differential equations’

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw —)@
scorefunction
i = [16)~ 07 o) -+ o0 @

Reverse SDE (noise — data)

'Figure from: https://yang-song.net/blog/2021/score/
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In summary, this course can be immensely useful for you to go into any
of these areas.

We will balance computation and theory for practical and conceptual
understanding.

Let’s get to our first motivating example.
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Estimating 7

Without being too clever

In this course, a core focus will be estimating certain quantities (prob-
abilities, expectations, etc.) using sampling.

Sampling here means random variate generation.

Let’s try to solve a simple problem to illustrate the methodology: Esti-
mating .

Can we estimate 7 using sampling? Any ideas?
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Estimating 7

Without being too clever

2
N/

Given the knowledge that:

area of circle T2

area of square ~ 4r2 4’

Can we phrase this question probabilistically?
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Without being too clever

What does this mean?
» Write down the estimation problem as

> a probability (of a set)
> an expectation

Most of the time, expectation is the most general way.
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Estimating 7

Without being too clever

Consider a 2D uniform distribution on [—1, 1] x [—1, 1].
» The ’probability’ of the square (whole space) is 1.
» The ’probability of the circle’ (set) is precisely the ratio of areas.

P(Circle) = %



Estimating 7

Without being too clever

Last question:

Can we estimate the probability of this set, if we had access to samples
from Unif([—1, 1] x [—1,1])?
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Perfect Monte Carlo

The idea

We have used here the most basic idea of estimating an integral (we will
clarify shortly).

Consider now a target measure 7 (x)dx? and a function ¢(x). If we have
access to i.i.d samples from X; ~ 7(x), then

(o) = [olomadr~ > o0,

using a particle approximation

1 N
N (dx) = N > ox,(dx).
i=1

2This is different from 7 the number!



Perfect Monte Carlo

The idea

Note by definition of the Dirac measure
o0) = [ o5, (@)

Therefore, given the approximation 7 (dx) = 3 LS | 6x,(dx), we
have

(o)~ (.7 = [ (o Zaxi O]



Estimating 7

Special case

Let X = [—1,1] x [—1, 1] and define the uniform measure such that
P(X) = 1.

Let A be the “circle” s.t. A C X. Now, the probability of A is given

P(A) = /A P(dx)

where x; ~ P.



Perfect Monte Carlo

The general problem

In general, we will be interested in sampling from general (unnormal-
ized) distributions:

where Z = [ ~(x)dx is the normalizing constant. Our general aim
throughout this course is to compute

(o) = / p()m(x)dx,

for ¢ : X — R ameasurable function. ¢(x) = x" for moments, p(x) =
14(x) for probabilities... In Bayesian inference

7(x) = pylx)p(x),
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Perfect Monte Carlo

The general problem

An estimator of the form
1
(o, 7N) = N Z e(Xi),

is desirable. Because
» The estimator is unbiased E[(¢, 7V)] = (¢, 7).
» The variance of this estimator is

var((p, 7)) = %var(cp(X)),

which is decreasing in N.
» Strong LLN holds

(o, ™) = (p,7) as.as N — oo.

» CLT holds
VN ((p,7V) = (¢, 7)) = N(0,0%(p, 7)) asN — cc.
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In terms of theoretical guarantees, we will favor L, bounds, i.e., for per-
fect MC, one can show that
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Perfect Monte Carlo

L, bounds

In terms of theoretical guarantees, we will favor L, bounds, i.e., for per-
fect MC, one can show that

- ll¢le

N
y ) — ) T = )
16, m) = (o7l < =5
for bounded test functions ¢, i.e., ||¢||occ < 0.

We are mostly interested in p = 2 case, which is square root of the MSE
in general.



In order to perform perfect and approximate Monte Carlo integration,
we need to be able to generate random variables from distributions.
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In order to perform perfect and approximate Monte Carlo integration,
we need to be able to generate random variables from distributions.

Next up: Pseudo uniform random number generation.

20
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What are pseudo-random numbers?

Why do we need them?

It is (literally) impossible to generate genuinely random numbers on
computers.
» You can flip a coin every time you need a binary number
> Is it really unbiased though??
» Throw a die
What other things can give you a truly random number?

» You can use www.random.org
» On a computer

> Try to measure some inner thermal noise (of circuits)
» Measure atmospheric noise

3Diaconis, P, Holmes, S., & Montgomery, R. (2007). Dynamical bias in the coin

toss. SIAM review, 49(2), 211-235.
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What are pseudo-random numbers?

Why do we need them?

It is (literally) impossible to generate genuinely random numbers on
computers.
» You can flip a coin every time you need a binary number
> Is it really unbiased though??
» Throw a die
What other things can give you a truly random number?

» You can use www.random.org
» On a computer

> Try to measure some inner thermal noise (of circuits)
» Measure atmospheric noise

As you can see, these are not very practical.

3Diaconis, P, Holmes, S., & Montgomery, R. (2007). Dynamical bias in the coin
toss. SIAM review, 49(2), 211-235.

22
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What are pseudo-random numbers?

Why do we need them?

If we want to simulate randomness, we need to obtain a way that is
> Repeatable
» Cheap

Ithas become an entire research topic to design deterministic algorithms
which gives samples that match the desired characteristics.

We will start from the simplest: The uniform distribution.

23
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Uniform pseudo-random numbers

The most important sampling task

The key to simulate many (many) other random variables is to be able
to simulate uniform random numbers.

We denote the task
U ~ Unif(1; 0, 1).
More precisely
U~pu)=1 for0<u<I.

We will look into an old way of doing it:
» Linear congruential random number generators

These methods are based on generating a deterministic linear recursion
with a careful design *.

“Note that current state-of-the-art is not based on this.
24



Uniform pseudo-random numbers

The most important sampling task
Linear congruential generators (LCGs from now on) are based on sim-
ulating a recursion:
Xpi1 =ax, +b (mod m)

where x is the seed, m is the modulus, b is the shift, and a is the mul-
tiplier.
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Uniform pseudo-random numbers

The most important sampling task

Linear congruential generators (LCGs from now on) are based on sim-
ulating a recursion:

Xpi1 =ax, +b (mod m)

where xg is the seed, m is the modulus, b is the shift, and a is the mul-
tiplier.

> mis an integer

> x9,a,b€{0,...,m—1}.
Givenx, € {0,...,m— 1}, we generate the uniform random numbers

Uy, = Xn e [0,1) Vn.
m

25



Uniform pseudo-random numbers

The most important sampling task

Example code (try and make it work!)

import numpy as np
import matplotlib.pyplot as plt

def lcg(a, b, m, n, x0):

x = np.zeros(n)
u = np.zeros(n)
x[0] = x0

ul0] = x0 / m

for k in range(l, n):
x[k] = (a * x[k - 1] + b) % m
ulk] x[k] / m

return u

26



Uniform pseudo-random numbers

The most important sampling task

A few things to know about LCGs:

» They generate periodic sequences.

Sequence Histogram

] 200 00 600 80 1000

Figure: m = 2048,a = 43,b = 0,xp = 1.

period T < m (m: the modulus).
» Full period: T =m

Choice of good parameters rely on some theory, some art.

27



Uniform pseudo-random numbers

The most important sampling task

Wikipedia has a list of parameters for professional implementations:

Parameters in common use [edit]

The following table lists the parameters of L including buittin
popularity, ‘many of these
(o2l
output bits
modulus multiplier increment of seed in
Source
m a c rand() or
Random(L)
2x81 2%+1 |75 74
Numerical Recipes from the
“quick and diny generators®
list, Chapter 7.1,Eq. 716 2% 1664525, 1013904223
parameters from Knuth and
H.W. Lewis.
bits 30..16in
Borland C/C++ 2% 22695477 1 rand(), 30.0
in Irand()
glibc (used by GCC)'"” & 1103515245 12345 bits 30.0

ANSI C: Watcom, Digital
Mars, CodeWarrior, IBM

VisualAge CIC+"®] 22t 1103515245 12345 bits 30.16
©90, G99, C11: Suggestion in

the ISO/IEC 9899,'%1 C17

o bits 63.32 of
Borland Delphi, Virtual Pascal | 2 184775813 1
(se0dxL)
Turbo Pascal 2% 134775813 (8088405, | 1
Microsolt Visual/Quick C/C++ | 2%2 214013 (343FD,g) | 2531011 (269EC3,) | bits 30.16
Microsolt Visual Basic (6 and | ,, 1140671485
) 7 12820163 (C39EC3;6)
eatter) (43FD4FD;)
ks 214748362 2147483587
RtlUniform from Native APIZ'] | 291 — 1
(TFFFFFED,g) (TFFFFFC;q)

Apple CarbonLb, C++11's

from: https://en.wikipedia.org/wiki/Linear_congruential_generator

28
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Uniform pseudo-random numbers

The most important sampling task

Better parameters:

Sequence Histogram Ui VS U

13 20000 40000 60000 80000 100000
K

29



Going forward, we will mostly assume that we will have access to a uni-
form random number generator.
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» When implementing U ~ Unif(0, 1), you can instead use
rng.uniform(0, 1, n)

where n is the number of samples you want to draw and rng is
appropriately initialised random number generator.
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Going forward, we will mostly assume that we will have access to a uni-
form random number generator.

» When implementing U ~ Unif(0, 1), you can instead use
rng.uniform(0, 1, n)

where n is the number of samples you want to draw and rng is
appropriately initialised random number generator.

Next up: Exact sampling methods
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» Inversion method
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» Inversion method
» Transformation method
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We will cover methods to sample more general nonuniform 7 (x):
» Inversion method
» Transformation method

> Rejection method

Next up: Sampling via inversion.

31



Exact sampling of distributions

How to simulate from any 7(x)?

Simulating from a given 7(x) is an endless research area (simulation,
sampling, generative models) and still flourishing.
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Exact sampling of distributions

How to simulate from any 7(x)?

Simulating from a given 7(x) is an endless research area (simulation,
sampling, generative models) and still flourishing.

We will start by describing some general methods to sample from more
general distributions.

32



Direct sampling of distributions

Inversion

THE INSTITOTE pog ADVANCED sTyupy
SCHO0L OF MATHEMATICS
PRINCETON, NEW yeasey

May 21, 1049

Mr. Stan ylap

Post 0ffice pox 1663
Santa Fe

New Mexico

Dear Stan;

Thanks for your letter of the 19th, 1 need not te13 ¥you that Klars
and I are looking forward to the trip ang visit at Iog Alamos this Sumner.
I have 2lready received the necessary papers from Carson ¥ark. I £i11eq
out and Teturned mine Yesterday; Klariss Will follow today,

that you have several randog number d.tstributions, each equidistributeq in
Grl o Led) 39 (= U, o hsoume 85t you want, one with 4pe
dMstribution function (density) Ll5) 5 . (677 L one way to
£om 18 13 £0 forn the cunyle 1p dstribution function, 2050 =3 4 5)et
to invert 4t 4 (x; = F = 29 /f) » and to forg £l L(xi)
D this L rk) | oy o SPPORIING polynontal. gy 1, o, I see, the

ming,
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Direct sampling of distributions

Inversion

The inversion technique is based on the following theorem (Theorem 2.1
of notes):

Consider a random variable X with a CDF Fx. Then the random variable
F'(U) where U ~ Unif(0, 1), has the same distribution as X.

Theorem 1

Proof.

The proof is one line:
P(Fx'(U) < x) = P(U < Fx(x)) = Fx(x).

which is the CDF of the target distribution. [
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Exact sampling of distributions

Inversion

Note that above result is written for the case where Fy ! exists, i.e., the
CDF is continuous. If this is not the case, one can define the generalised
inverse function,

Fy (u) = min{x : Fx(x) > u}.

35



Exact sampling of distributions

Inversion

Going back to statement: If U ~ Unif(0, 1) then X’ = F ' (U) has the
desired distribution, i.e.,

X/ ~ pX(x).
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Exact sampling of distributions

Inversion

Going back to statement: If U ~ Unif(0, 1) then X’ = F ' (U) has the
desired distribution, i.e.,

X/ ~ pX(x).

Then this suggests an algorithm:
» Sample U ~ Unif([0, 1]),
> Draw X = F;'(U).
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Exact sampling of distributions

Inversion

Going back to statement: If U ~ Unif(0, 1) then X’ = F ' (U) has the
desired distribution, i.e.,

X/ ~ pX(x).

Then this suggests an algorithm:
» Sample U ~ Unif([0, 1]),
> Draw X = F;'(U).

Of course, this is limited to the cases where we can invert the CDE.
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Exact sampling of distributions

Inversion: Discrete (categorical) distribution
Let us consider some examples.

The most generic one is the discrete (categorical) distribution. For K >
1 (integer), define K states s, . . . , sy where

p(sk) € [0,1] where Zp(sk) =1.
k=1

Simpler than it looks, consider the die:
sk = k (the face of die)
and their probabilities

p(sk) = 1/6.
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Exact sampling of distributions

Inversion: Discrete (categorical) distribution

How does the sampling work?

A — PMFp
— CDFF
— 1 -—
o —o
0.8
0.64
U ~ Unif(0, 1)§e=mmse=[-nemmmemmmesmmme e
——o
0.4 "
[ ]
0.2
1 2 3 4

» Draw U ~ Unif(0, 1)
» Choose Fy (1) = min{x : Fx(x) > u}
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Exact sampling of distributions

Inversion: Discrete (categorical) distribution

How does the sampling work?

A — PMFp
— CDFF
— 1 -—
o —o
0.8
0.64
U ~ Unif(0, 1)§e=mmse=[-nemmmemmmesmmme e
——o
0.4 "
[ ]
0.2
1 2 4

» Draw U ~ Unif(0, 1)

» Choose Fy (1) = min{x : Fx(x) > u} generic for discrete dist.

38



Exact sampling of distributions

Inversion: Discrete (categorical) distribution

import numpy as np
import matplotlib.pyplot as plt

np.array([0.2, 0.3, 0.4, 0.1]) # pmf
np.array([1, 2, 3, 4]) # support (states)

n =
I

def discrete_cdf (w):
return np.cumsum(w)

cw = discrete_cdf (w)

def plot_discrete_cdf(w, cw):

fig, ax = plt.subplots(l, 2, figsize=(20, 5))
ax[0] .stem (s, w)

ax[1] .plot(s, cw, 'o-', drawstyle='steps-post')
plt.show ()

plot_discrete_cdf (w, cw)
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Exact sampling of distributions

Inversion: Exponential distribution

The exponential density
m(x) = Exp(x; \) = e ™.

for x > 0. Otherwise 7(x) = 0.

54 — A=01
— A=02
— A=05
4] — A=08
— =1
—_—A=12

A=16
—A=2

A=5
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Exact sampling of distributions

Inversion: Exponential distribution

m(x) = Exp(x; \) = Ae .
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Exact sampling of distributions

Inversion: Exponential distribution

m(x) = Exp(x; \) = Ae .

We calculate the CDF

P = [ rar

= /\/ e_Ax/dx',
0

1 1
= )\ [—e_)‘x}
A x'=0
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Exact sampling of distributions

Inversion: Exponential distribution

m(x) = Exp(x; \) = Ae .

We calculate the CDF

P = [ rar

= /\/ e_/\x/dx',
0
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Exact sampling of distributions

Inversion: Exponential distribution

Deriving the inverse:
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Exact sampling of distributions

Inversion: Exponential distribution

Deriving the inverse:

1— e—/\x

! log(1 — u)
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Exact sampling of distributions

Inversion: Exponential distribution

Deriving the inverse:

= x = —llog(l—u)

= Fy'(u) = —Atlog(l —u).
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Inversion: Exponential distribution

Deriving the inverse:

u = l—e™
1
= x = -3 log(1 — u)
= Fy'(u) = —Atlog(l —u).

So what is the algorithm?
» Generate u; ~ Unif([0, 1])
> x; = —A"llog(1 — u;).
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Exact sampling of distributions

Inversion: Exponential distribution

Deriving the inverse:

u = l—e™
1
= x = -3 log(1 — u)
= Fy'(u) = —Atlog(l —u).

So what is the algorithm?
» Generate u; ~ Unif([0, 1])
> x; = —A"llog(1 — u;).

42



Exact sampling of distributions

Inversion: Is Gaussian possible?

Let 7(x) = N (x; u, 2). Can we use inversion?
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Exact sampling of distributions

Inversion: Is Gaussian possible?

Let 7(x) = N (x; u, 2). Can we use inversion?

No. F3 ! is impossible to compute and hard to approximate.
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Exact sampling of distributions

Transformation method

Inversion is a special case of a general method called transformation
method.
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Exact sampling of distributions

Transformation method

Inversion is a special case of a general method called transformation
method.

Transformation method:
» Sample U; ~ Unif(u;0, 1)
» Transform: X; = g(Uj;).

Inversion is just setting g = Fy L

44



Exact sampling of distributions

Transformation method: Sampling a custom uniform

The simplest example can be seen from sampling a uniform on [a, b]
using a uniform on [0, 1].
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Exact sampling of distributions

Transformation method: Sampling a custom uniform

The simplest example can be seen from sampling a uniform on [a, b]
using a uniform on [0, 1].

» Draw U; ~ Unif(u;0, 1)

> SetX; =g(U;)) =(b—a)U;+a
then X; ~ Unif(x; a, b).

For general g, how do we compute the density?
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Exact sampling of distributions

Transformation method

IfX ~ px(x)and Y = g(X), what is py (y)?
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Exact sampling of distributions

Transformation method

IfX ~ px(x)and Y = g(X), what is py (y)?

py(y) = px(g7' () [det -1 ()]
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Exact sampling of distributions

Transformation method

IfX ~ px(x)and Y = g(X), what is py (y)?
py(y) = px(g7' () [det -1 ()]

where ] is the Jacobian of the inverse mapping ¢!, evaluated at y:

Ogi ' /oy1 Og17'/Oy2 -+ Ogi'/Oyn
Jo-1 =
Og,t/Oy1 0gy'/Oya -+ gy t/Oyn
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Exact sampling of distributions

Transformation method: An exercise

If X ~ N(0,1), derive the distribution of

Y=0X+4p.

47



Exact sampling of distributions

Transformation method: An exercise

The inverse transform is:

o) =R

ag
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Exact sampling of distributions

Transformation method: An exercise

The inverse transform is:

o) =R

o
Therefore,
-1

P = px( () \dgdy

which is
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Exact sampling of distributions

Transformation method: An exercise

The inverse transform is:

o) =R

ag

Therefore,

-1

P = px( () \dgdy

which is

() = ——exp(- YLy 0?)
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How to sample Gaussians from uniforms?

Box-Miiller method

Finally, we provide the Box-Miiller method for Gaussians: Let Uy, Uy ~
Unif(0, 1) be independent. Then

Z1 = \/—2log U cos(2mUs),
Zy = /—2log Uy sin(21Usy),

are independent (0, 1)-distributed random variables.
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Next step?

Follow von Neumann

nethod that you have in mipa. o el ThiS is, as T ses, tne
An alternatiye, .
s Which works ip jE
0,1, 1s thig: . and all values of 7E )
* PS5 i 14
to whethar "::n mgm: Xy am use or regect ‘fif a i
in the Y F ) oo, In the firay ! feording
second case form ne ‘!d“ that. step case, put £ x

Rejection sampling
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Recap: We have seen
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» Uniform random variate generation
» Direct sampling from variety of distributions
» Inversion method

» Draw U ~ Unif(0, 1)
» Compute X = F~ (U) = min{x : Fx(x) > u}
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Recap: We have seen

» Uniform random variate generation
» Direct sampling from variety of distributions
» Inversion method
» Draw U ~ Unif(0, 1)
» Compute X = F~ (U) = min{x : Fx(x) > u}
» Transformation method.
» Draw U ~ Unif(0, 1),
» Obtain X = g(U) for some general transformation g.
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Recap: We have seen

» Uniform random variate generation
» Direct sampling from variety of distributions
» Inversion method
» Draw U ~ Unif(0, 1)
» Compute X = F~ (U) = min{x : Fx(x) > u}
» Transformation method.
» Draw U ~ Unif(0, 1),
» Obtain X = g(U) for some general transformation g.
However, those methods required a quite specific structure for us to be
able to sample.
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What if inverse of CDF or a nice transformation is not available?
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What if inverse of CDF or a nice transformation is not available?

What if we cannot evaluate 7(x) — only evaluate an unnormalised den-
sity 7(x) where
() ()

VA
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What if inverse of CDF or a nice transformation is not available?

What if we cannot evaluate 7(x) — only evaluate an unnormalised den-
sity 7(x) where

m(x) = <Zx)

Can we still do exact sampling?
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The Fundamental Theorem of Simulation

Is there a more general structure?

Theorem 2 (Theorem 2.2, Martino et al., 2018)

Drawing samples from one dimensional random variable X with a density
v(x) o< w(x) is equivalent to sampling uniformly on the two dimensional
region defined by

A={(xy) eR*:0<y <y(0)}. (2)

In other words, if (x', y) is uniformly distributed on A, then x' is a sample
from 7(x).
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Sampling Beta density

Testing the theorem

Let

o+ p) Lo
L(a)I'(B)

where I'(n) = (n — 1)! for integers. For Beta(2, 2):

7(x) = Beta(o, B) = (1-— X)Bfl,

0.0 02 0.4 06 0.8 10

Its maximum is 1.5 in this specific case. Can we sample uniformly?
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Sampling Beta density

Testing the theorem

Let

o+ p) Lo
L(a)I'(B)

where I'(n) = (n — 1)! for integers. For Beta(2, 2):

7(x) = Beta(o, B) = (1-— X)Bfl,

0.0 02 0.4 06 0.8 10

Its maximum is 1.5 in this specific case. Can we sample uniformly?
» Sample from the box [0, 1] x [0, 1.5] and keep the ones inside.
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Sampling Beta density

Testing the theorem

Let

o+ p) Lo
L(a)I'(B)

where I'(n) = (n — 1)! for integers. For Beta(2, 2):

7(x) = Beta(o, B) = (1-— X)Bfl,

0.0 02 0.4 06 0.8 10

Its maximum is 1.5 in this specific case. Can we sample uniformly?
» Sample from the box [0, 1] x [0, 1.5] and keep the ones inside.
> Note though our aim is to ‘test the x-marginal
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Sampling Beta density

Testing the theorem
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Note the key aspects:
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Note the key aspects:
» We have not used any inverse CDF or transformation but
» We have used the expression of 7(x)
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Note the key aspects:
» We have not used any inverse CDF or transformation but

» We have used the expression of 7(x)

We can get away with an unnormalised density v(x) (as FTS suggests).
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Rejection sampling

More than a box

Using a box wrapping the density is very inefficient:
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» You need the maximum of the density
P = max7(x)

which could be as hard as the sampling problem!
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Rejection sampling

More than a box

Using a box wrapping the density is very inefficient:

» You need the maximum of the density
P = max7(x)

which could be as hard as the sampling problem!

» For densities that are peaky, this could be wildly inefficient

Idea: Design a proposal density that tightly wraps the target density

57



Rejection sampling

Choice of the proposal

Consider a (target) density 7(x) and a proposal density g(x).
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Rejection sampling

Choice of the proposal

Consider a (target) density 7(x) and a proposal density g(x).

For rejection sampling, we always choose a proposal such that
m(x) < Mq(x),

for M > 1.
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Rejection sampling

Choice of the proposal

Consider a (target) density 7(x) and a proposal density g(x).

For rejection sampling, we always choose a proposal such that
m(x) < Mq(x),

for M > 1. Intuitively, the Mg(x) curve should be above 7(x).
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Rejection sampling

The algorithm

But how to obtain a sample under the curve?
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The algorithm

But how to obtain a sample under the curve?

We can do
» Sample x" ~ g(x)
» Sample v/ ~ Unif(«/; 0, Mq(x"))
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Rejection sampling

The algorithm

But how to obtain a sample under the curve?

We can do
» Sample x" ~ g(x)
» Sample v/ ~ Unif(«/; 0, Mq(x"))
> Accept if

u < m(x),

This would give us (x’, #) uniformly under the curve (hence x’ samples
would be distributed w.r.t. 7(x))

59



Rejection sampling

The algorithm: A closer look

To implement the method:

» Sample x" ~ g(x),
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The algorithm: A closer look

To implement the method:
» Sample x" ~ g(x),
» Sample u ~ Unif(u;0,1)
> Accept if

60



Rejection sampling

The algorithm

The rejection sampler:
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Rejection sampling

The algorithm

The rejection sampler:
> X'~ q(x),
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Rejection sampling

The algorithm

The rejection sampler:
> X' ~q(x),
» Accept the sample X’ with probability

m(X')
Mg(x) =

a(X") =
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We have seen that rejection sampling works for general densities but
requires the evaluation of 7(x).
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r(x) = v(x)

VA
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We have seen that rejection sampling works for general densities but
requires the evaluation of 7(x).

In many (many) cases, we cannot evaluate 7(x)!

Luckily, we can evaluate 7(x) up to a normalising constant:

r(x) = v(x)

VA

Note the terminology and convention:
» ~(x) is called the unnormalised density

» Z is called the normalising constant

» It is a super important quantity for many other purposes
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We have seen that rejection sampling works for general densities but
requires the evaluation of 7(x).

In many (many) cases, we cannot evaluate 7(x)!

Luckily, we can evaluate 7(x) up to a normalising constant:

r(x) = v(x)

VA

Note the terminology and convention:
» ~(x) is called the unnormalised density
» Z is called the normalising constant
» It is a super important quantity for many other purposes

» We write m(x) o ~y(x) to say p is proportional to y(x) but nor-
malised to integrate (or sum) to one.
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Rejection sampling

The algorithm: A closer look

To implement, choose M and g such that y(x) < Mg(x)
» Sample x’ ~ g(x),
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Rejection sampling

The algorithm: A closer look

To implement, choose M and g such that y(x) < Mg(x)
» Sample x’ ~ g(x),
» Sample u ~ Unif(u;0,1)
» Accept if

Exactly same - -y used instead of p provided that v (x) < Mg(x)
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Rejection sampling

Examples: Acceptance matters

Rejection sampler:
» Sample x" ~ g(x),
» Sample u ~ Unif(u;0,1)
> Accept if
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Rejection sampling

Examples: Acceptance matters

Rejection sampler:
» Sample x" ~ g(x),
» Sample u ~ Unif(u;0,1)
> Accept if

In order for this algorithm to be implemented, we do not want many re-
jections (as we want many accepted samples to build our distribution).
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Rejection sampling

Examples: Acceptance matters

Rejection sampler:
» Sample x" ~ g(x),
» Sample u ~ Unif(u;0,1)
> Accept if

In order for this algorithm to be implemented, we do not want many re-
jections (as we want many accepted samples to build our distribution).

How to compute acceptance rate?
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Rejection sampling

Examples: Acceptance matters

Proposition 1

When the target density w(x) is normalised and M is prechosen, the ac-
ceptance rate is given by

. 1
a:M,

where M > 1 in order to satisfy the requirement that q covers 7. For
an unnormalised target density y(x) with the normalising constant Z =
[ ~v(x)dx, the acceptance rate is given as

a=

Z
e
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Rejection sampling

Examples: Same Beta(2, 2), better proposal

Choose
g(x) = N(0.5,0.25),

with M = 1.3.

— plx)
— Mgt

00 02 04 06 08 10
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Rejection sampling

Examples: Same Beta(2, 2), better proposal

Choose
g(x) = N(0.5,0.25),

with M = 1.3.

— plx)
— Mgt

00 02 04 06 08 10

Simulation.
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Rejection sampling

Choice of M

A standard choice for M is

— plx) — plx)

175 — ak 175 — Mql0
— p(x)/q(x)

1.50 1.50

1.25 1.25

1.00 1.00

0.75 0.75

0.50 0.50

0.25 0.25

0.00 0.00

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
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Rejection Sampling

Example: Sampling truncated distributions

Given N (x;0,1), suppose we are interested in sampling this density
between [—a, a]. We can write this truncated normal density as

(%) = y(x)  N(x0,1)1 e <a} ()
-z [ N@y;0,)dy

We can choose g(x) = N(x;0, 1) anyway, and we have v(x) < g(x)
(i.e. we can take M = 1). The resulting algorithm is extremely intuitive:
All you need is to sample from g(x) = N (x;0,1) and reject if this
sample is out of bounds [—a, al.
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We have covered the rejection sampler:

> Sample X’ ~ g(x) = Unif(0, 1)
» Sample U ~ Unif(0, 1)
> IfU < y(X')/Mg(X"),

> Accept X’

69



We have covered the rejection sampler:
> Sample X’ ~ g(x) = Unif(0, 1)
» Sample U ~ Unif(0, 1)
> IfU < y(X')/Mg(X"),
> Accept X’

While very popular in 90s, it is extremely hard to compute M for mod-

ern large scale problems.
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Importance Sampling

Monte Carlo integration

Another popular approach to compute expectations (¢, 7) is called im-
portance sampling.
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Importance Sampling

Monte Carlo integration

Another popular approach to compute expectations (¢, 7) is called im-
portance sampling.

Assume, as in the rejection sampling case, 7 is absolutely continuous
w.r.t. g, denoted as 7 < ¢, meaning g(x) =0 = w(x) = 0.
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Importance Sampling

Monte Carlo integration

Another popular approach to compute expectations (¢, 7) is called im-
portance sampling.

Assume, as in the rejection sampling case, 7 is absolutely continuous
w.r.t. g, denoted as 7 < ¢, meaning g(x) =0 = w(x) = 0.

Then, we can write

(¢, ) :/SO(X)W(CDC) = /cp(x)(:;(x)q(x)dx.

When 7 and q admit densities,

= X )T(X = wa
(%ﬂ)/@() (x)dx /90( g

X
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Importance Sampling

Monte Carlo integration

Given

(o) = [ o T q(wa,

we can employ standard Monte Carlo by sampling X; ~ g and then
constructing (by setting w = 7/q)

(0, 7) = = 3 p(Xw(x),
i=1

1 N
= N ZW,QO(X,)
i=1

where w; = w(X;). We will call this estimator the importance sampling
(IS) estimator.
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Importance Sampling

Monte Carlo integration

Mini-quiz: Is this estimator unbiased?
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Importance Sampling

Monte Carlo integration

Mini-quiz: Is this estimator unbiased?
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Importance Sampling

Monte Carlo integration

What is the variance?

varg[(¢, 7)) = var, [ ZW,cp

1
N2

varg [ w(X;)e(Xi)

= %varq (w(X)p(X)] where X ~ g(x)
= 5 (B P00 = By (00 (X)1)
1
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Importance Sampling

Monte Carlo integration

Finally, the basic IS estimator satisfies the following L, bound just like
the perfect Monte Carlo

~N Ep||90||oo
, ) — , TC < )
Iom) = (o, A p < 20

where ¢, is a constant depending on p and g.
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Importance Sampling

Self-normalised IS

What if we only have access to y(x) o m(x)?
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Importance Sampling

Self-normalised IS

What if we only have access to y(x) o m(x)?

Assume v < g and both abs. cont w.r.t. to the Lebesgue measure. Then
we can write

We can then perform the same Monte Carlo integration idea but now
both for the numerator and denominator.
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Importance Sampling

Self-normalised IS (SNIS)

We have
(e.m) = [ plnn(ax
ﬁ
_ f p(x) 25y a(x)dx
2 o
J g0 1
Define W(x) = v(x)/q(x) and the SNIS approximation is given as

omy — S POW s %Y XWX
’ J W(x)q(x)dx LYY wx)

where X; ~ q(x). Let us write W; = W(X;) and w; = W;/ Z}il Wi
Then the final estimator is

N

(0, 7) = wip(X))

i=1
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Importance Sampling

Self-normalised IS (SNIS)

Mini-quiz: Is this estimator unbiased?
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Self-normalised IS (SNIS)

Mini-quiz: Is this estimator unbiased?
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Importance Sampling

Self-normalised IS (SNIS)

Mini-quiz: Is this estimator unbiased?

The estimator is a ratio of two unbiased estimators. However, this ratio
is not unbiased.
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Importance Sampling

Self-normalised IS (SNIS)

However, one can prove that

Spll#lloo

\/N )

where ¢, is a constant depending on p and g and ¢ is bounded.

1o, m) — (0, )l <
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Importance Sampling
Self-normalised IS (SNIS)

Theorem 3

The MSE (i.e., set p = 2 and square both sides) is bounded by

2] < 4elloop
E[((p,m) - (0, 7")*] < T2,

where

p=x>(rllq) + 1.

Suggests that the discrepancy between 7 and g controls the MSE.



Importance Sampling

Self-normalised IS (SNIS), MSE bound

Proof. We first note the following inequalities,

N)’ — (@Wv Q) ((pW, qN)

(W.q)  (W,q")

(o, ™) = (o, 7

|(90W7q - (SOW’ qN)| N 1 _ 1
N U A '(W,cp W.q")
|(90W7q B (QDW’ qN)|

N (W7qN)_(W7Q)
T e

- (QDW’ qN)| + HSOHOOKW?qN) B (W7q)|
(W,q) '

80



We take squares of both sides and apply the inequality (a+b)? < 2(a®+
b?) to further bound the rhs,

’(¢W7q) - (QOW, qN)’2
o=l (W, q)?

We can now take the expectation of both sides,

2 N
Lol

2E | ((pW.q) - (¢ W.4"))’]

~ 2
E |:((9077r) - (‘PvTrN)) } < (W7Q)2 +
2elIE [(W.a%) - (W, )]
(W, q)? '

Note that, both terms in the right hand side are perfect Monte Carlo
estimates of the integrals.
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Bounding the MSE of these integrals yields
2 (¢*W?,

<2 — (pW,q)? N 2/lll% (W2, q) — (W, q)?

)
- N (W,q)? N (W,q)?
)

<2l (W) | 2lels (W2 q) — (W,9)°
N (W.q) N (W,q)?

7+

Therefore, we can straightforwardly write,

2 2
E [((WT) - (cp,ffN)ﬂ s?kkg (WN’ 1),

)
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2 2
ST

Now it remains to show the relation of the bound to x? divergence. Note
that,

2X
W2q) | pegatds

W,q)?2 N 2
WP (] B (e
7'('2 X
22 [ 58q(x)dx
z2(f 7rdx)2
ﬂaq
=E, | 5= :=0p.
! [qQ (%)
Note that p is not exactly x? divergence, which is defined as p— 1. Plug-
ging everything into our bound, we have the result,

2
E [((p.m) - (o )] <
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Importance Sampling

Optimised Adaptive IS

Moreover, if g is an exponential family, then p is convex (Akyildiz and
Miguez, 2021). This suggests that we can optimise g to minimise p
and hence the MSE. See Akyildiz and Miguez, 2021 for utilisation of
stochastic convex optimisation techniques to obtain uniform-in-time
bounds for adaptive SNIS.
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See you next week!
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Thanks!



References I

U Akyildiz, Omer Deniz and Joaquin Miguez (2021). “Convergence
rates for optimised adaptive importance samplers”. In: Statistics and
Computing 31.2, pp. 1-17.

Martino, Luca, David Luengo, and Joaquin Miguez (2018). Indepen-
dent random sampling methods. Springer.

87



	Uniform random number generation
	Rejection Sampling
	References

