
SMC Masterclass: Introduction to particle filters

Ömer Deniz Akyıldız⋆, †

⋆The Alan Turing Institute, London, UK.
†University of Cambridge, UK.

odakyildiz@turing.ac.uk

August 6, 2022

Abstract

Lecture notes for 2h long course I taught as a part of the Sequential Monte Carlo (SMC)
Masterclass event held at University of Bristol, 30 March 2022-1 April 2022.
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1 Introduction

In these notes, we aim at providing a comprehensive introduction to sequential Monte Carlo
(SMC) methods for filtering and estimation problems.

Notation

We denote x1:t = (x1, . . . , xt).
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Figure 1: The conditional independence structure of a state-space model.

2 Background

In this section, we will introduce some essential tools to build the SMC methods we will intro-
duce later.

2.1 State-space models

Consider a Markov process (xt)t≥0 defined on the measurable space (X,X ) with X ⊂ Rdx . This
process denotes the signal of interest, e.g., the state of an object, the velocity field of a partial
differential equation (PDE), hence the call it the signal process. Similarly, we define another
sequence of random variables (yt)t≥1, defined on Y ⊂ Rdy , to denote our observation sequence,
or the observation process. This sequence denotes the observed data coming from the signal
process and it can typically consist of noisy sensor measurements.

In order to formalise the probabilistic model, we define a state-space model (also called
continuous-state hidden Markov model) is described by three distributions,

x0 ∼ µ(x0)

xt|xt−1 ∼ f(xt|xt−1),

yt|xt ∼ g(yt|xt),

where µ is called the prior distribution, f is a Markov transition kernel defined on X, and g as
the likelihood function. For convenience, we always assume the densities exist in this document
but a general construction is possible.

2.2 The filtering problem

Given a sequence of observations, a typical problem is to estimate the conditional distributions
of the signal process (xt)t≥0 given the observed data. We denote this distribution with πt(xt|y1:t)
which is called the filtering distribution. The problem of sequentially updating the sequence of
filtering distributions (πt(xt|y1:t))t≥1 is called the filtering problem.

To introduce the idea intuitively, consider the scenario of tracking a target. We denote the
states of the target with (xt)t≥0 which may include positions and velocities. We assume that
the target moves in space w.r.t. f , i.e., the transition model of the target is given by f(xt|xt−1).
Observations may consist of the locations of the target on R2 or power measurements with
associated sensors (which may result in high-dimensional observations). At each time t, we
receive a measurement vector yt conditional on the true state of the system xt. The likelihood
of each observation is assumed to follow g(yt|xt).

We now provide a simple recursion to demonstrate one possible solution to the filtering
problem. Assume that we are given the distribution at time t − 1 (to define our sequential
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recursion) and would like to incorporate a recent observation yt. One way to do so is to first
perform prediction

π̄t(xt|y1:t−1) =

∫
f(xt|xt−1)πt−1(xt−1|y1:t−1)dxt−1, (1)

and obtain the predictive measure and then perform update

πt(xt|y1:t) = π̄t(xt|y1:t−1)
g(yt|xt)

p(yt|y1:t−1)
, (2)

where p(yt|y1:t−1) =
∫
π̄t(xt|y1:t−1)g(yt|xt)dxt is the incremental marginal likelihood.

Remark 1. We remark that the celebrated Kalman filter exactly implements recursions (1)–(2)
in the case of1

µ(x0) = N (x0;µ0,Σ0),

f(xt|xt−1) = N (xt;Axt−1, Q),

g(yt|xt) = N (yt;Cxt, R).

For this Gaussian system, computing the integral (1) and the update (2) is analytically tractable,
which results in Kalman filtering recursions of the mean and the covariance of the filtering
distribution πt(xt|y1:t). We skip the update rules of the Kalman filter, as our main aim is to focus
on sequential Monte Carlo in this document.

Finally, we can move on to show how to update joint filtering distribution of the states x0:t.
To see this, note the recursion

πt(x0:t|y1:t) =
γ(x0:t, y1:t)

p(y1:t)

=
γ(x0:t−1, y1:t−1)

p(y1:t−1)

f(xt|xt−1)g(yt|xt)
p(yt|y1:t−1)

= πt(x0:t−1|y1:t−1)
f(xt|xt−1)g(yt|xt)

p(yt|y1:t−1)
.

This recursion will be behind the sequential Monte Carlo method we use for filtering in the next
sections.

2.3 Importance sampling

Before we introduce the sequential Monte Carlo sampling for filtering, we introduce the basic
importance sampling idea and its terminology. Assume that we aim at estimating expectations
of a given density π, i.e., we would like to compute

π(φ) =

∫
φ(x)π(x)dx.

We also assume that sampling from this density is not possible and we can only evaluate the
unnormalised density γ(x). One way to estimate this expectation is to sample from a proposal

1The variables (A,C,Q,R) can be time dependent, we consider the time-independent case for simplicity through-
out.
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measure q and rewrite the integral as

π(φ) =

∫
φ(x)π(x)dx,

=

∫
φ(x)γ(x)q(x) q(x)dx∫ γ(x)

q(x) q(x)dx
,

≈
1
N

∑N
i=1 φ(x

(i))γ(x
(i))

q(x(i))

1
N

∑N
i=1

γ(x(i))

q(x(i))

, x(i) ∼ q, i = 1, . . . , N. (3)

Let us know introduce the unnormalised weight function2

W (x) =
γ(x)

q(x)
. (4)

With this, the Eq. (3) becomes

πN (φ) =
1
N

∑N
i=1 φ(x

(i))W (x(i))
1
N

∑N
i=1W (x(i))

, x(i) ∼ q, i = 1, . . . , N,

=

∑N
i=1 φ(x

(i))W(i)∑N
i=1W

(i)
, x(i) ∼ q, i = 1, . . . , N,

where W(i) = W (x(i)) are called the unnormalised weights. Finally, we can obtain the estimator
in a more convenient form,

πN (φ) =

N∑
i=1

w(i)φ(x(i)) = πN (φ),

by introducing the normalised importance weights

w(i) =
W(i)∑N
i=1W

(i)
, (5)

for i = 1, . . . , N . We note that the particle approximation of π in this case is given as

πN (dx) =

N∑
i=1

w(i)δx(i)(dx). (6)

In the following section, we will derive the importance sampler aiming at building particle
approximations of πt(x0:t|y1:t) for a state-space model.

2.4 Importance sampling for state-space models: The emergence of the general
particle filter

In this section, we simply derive an importance sampler for the joint filtering distribution
πt(x0:t|y1:t). We will see in the process that the particle filter is a special case of this con-
ceptually simple importance sampler (defined just in many variables instead of one) and the
infamous bootstrap particle filter is a further simplified case.

2More technically, these weights are the evaluations of the Radon-Nikodym derivative W (x) = dγ
dq

(x) (which, in
this case, is just a ratio as we assume absolute continuity implicitly).
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Let us assume that, in order to build an estimator of πt(x0:t|y1:t), we have a proposal distribu-
tion over the entire path space x0:t denoted q(x0:t). Note that, we also denote the unnormalised
distribution of x0:t as γ(x0:t, y1:t) which is given as

γ(x0:t, y1:t) = µ(x0)
t∏

k=1

f(xk|xk−1)g(yk|xk). (7)

This simply the joint distribution of all variables (x0:t, y1:t). Just as in the regular importance
sampling case in eq. (4), we write

W0:t(x0:t) =
γ(x0:t, y1:t)

q(x0:t)
.

Obviously, given samples from the proposal x
(i)
0:t ∼ q(x0:t), one can easily build the same

weighted measure as in (6) on the path space by evaluating the weight W(i)
0:t = W0:t(x

(i)
0:t) for

i = 1, . . . , N and building a particle approximation

πN (dx0:t) =
N∑
i=1

W
(i)
0:tδx(i)

0:t

(dx0:t).

However, this would be an undesirable scheme: We would need to store all variables in memory
which is infeasible as t grows. Furthermore, with the arrival of a new observation yt+1, this
would have to be re-done, as this importance sampling procedure does not take into account
the dynamic properties of the SSM. Therefore, implementing this sampler to build estimators
sequentially is out of question.

Fortunately, we can design our proposal in certain ways so that this process can be done
sequentially, starting from 0 to t. Furthermore, this would allow us to run the filter online
and incorporate new observations. The clever choices of the proposal here lead to a variety of
different particle filters as we shall see next. Let us consider a decomposition of the proposal

q(x0:t) = q(x0)

t∏
k=1

q(xk|x1:k−1).

Note that, based on this, we can build a recursion for the function W (x0:t) by writing

W0:t(x0:t) =
γ(x0:t, y1:t)

q(x0:t)
,

=
γ(x0:t−1, y1:t−1)

q(x0:t−1)

f(xt|xt−1)g(yt|xt)
q(xt|x0:t−1)

,

= W0:t−1(x0:t−1)
f(xt|xt−1)g(yt|xt)

q(xt|x0:t−1)
,

= W0:t−1(x0:t−1)Wt(x0:t). (8)

That is, under this scenario, the weights can be computed recursively – given the weights of
time t − 1, one can evaluate W0:t(x0:t) and update the weights. However, this would not solve
the infeasibility problem mentioned earlier, as the cost of evaluating using the whole path of
samples is still out of question. Finally, to remedy this, we can further simplify our proposal

q(x0:t) = q(x0)
t∏

k=1

q(xk|xk−1).
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by removing dependence to the past, essentially choosing a Markov process as a proposal. This
allows us to obtain purely recursive weight computation

W0:t(x0:t) =
γ(x0:t, y1:t)

q(x0:t)
, (9)

=
γ(x0:t−1, y1:t−1)

q(x0:t−1)

f(xt|xt−1)g(yt|xt)
q(xt|xt−1)

, (10)

= W0:t−1(x0:t−1)
f(xt|xt−1)g(yt|xt)

q(xt|xt−1)
, (11)

= W0:t−1(x0:t−1)Wt(xt, xt−1), (12)

using only the samples from time t − 1 and time t. The advantage of this scheme is explicit
in the notation: Note that the final weight function Wt only depends on (xt, xt−1), but not the
whole past as in (8). The function Wt(xt, xt−1) is called the incremental weight function.

2.4.1 Sequential importance sampling

We can now see how the one-step update of this sampler works given a new observation. As-
sume that we have computed the unnormalised weights W

(i)
1:t−1 = W (x

(i)
0:t−1) recursively and

obtained samples x
(i)
0:t−1. As we mentioned earlier, we only need the last sample x

(i)
t−1 to obtain

the weight update given in (12). And also note that W(i)
1:t−1 for i = 1, . . . , N are just numbers,

they do not need the storage of previous samples. Given this, we can now sample from the
Markov proposal x(i)t ∼ q(xt|x(i)t−1) and compute the weights of the path sampler at time t as

W
(i)
1:t = W

(i)
1:t−1 ×W

(i)
t ,

where

W
(i)
t =

f(x
(i)
t |x(i)t−1)g(yt|x

(i)
t )

q(x
(i)
t |x(i)t−1)

.

What we described in other words is that, given the samples x
(i)
t−1, we first perform sampling

step
x
(i)
t ∼ q(xt|xt−1)

, and then compute

W
(i)
t =

f(x
(i)
t |x(i)t−1)g(yt|x

(i)
t )

q(x
(i)
t |x(i)t−1)

.

and update

W
(i)
1:t = W

(i)
1:t−1 ×W

(i)
t .

These are unnormalised weights and we normalise them to obtain,

w
(i)
1:t =

W
(i)
1:t∑N

i=1W
(i)
1:t

,
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Algorithm 1 Sequential Importance Sampling (SIS)

1: Sample x
(i)
0 ∼ q(x0) for i = 1, . . . , N .

2: for t ≥ 1 do
3: Sample: x(i)t ∼ q(xt|x(i)t−1),
4: Compute weights:

W
(i)
t =

f(x
(i)
t |x(i)t−1)g(yt|x

(i)
t )

q(x
(i)
t |x(i)t−1)

.

and update

W
(i)
1:t = W

(i)
1:t−1 ×W

(i)
t .

Normalise weights,

w
(i)
1:t =

W
(i)
1:t∑N

i=1W
(i)
1:t

.

5: Report

πN
t (dx0:t) =

N∑
i=1

w
(i)
1:tδx(i)

0:t

(dx0:t).

6: end for

which finally leads to the empirical measure,

πN (dx0:t) =

N∑
i=1

w
(i)
1:tδx(i)

0:t

(dx0:t).

The full scheme is given in Algorithm 1. This method is called sequential importance sampling
(SIS). This is not very popular in the literature due to the well known weight degeneracy prob-
lem. We next introduce a resampling step to this method and will obtain the first particle filter
in this lecture.

2.4.2 Sequential importance sampling with resampling: The general particle filter

We finally describe the general particle filter by extending the above method with a resampling
step employed after the weighting step. We will show in a practical session that the SIS method
without resampling easily degenerates, i.e., after some time, only a single weight approximates
to 1 and others to 0, rendering the method a point estimate. To keep the particle diversity, a
resampling method is introduced in between weighting and sampling steps. This step does not
introduce a systematic bias, although, it adds additional terms to the overall Lp error.

With the additional resampling step, the sequential importance sampling with resampling
(SISR) takes the form given in Algorithm 2. We note that, effectively, resampling step sets
W

(i)
1:t−1 = 1/N for i = 1, . . . , N . Therefore, we only need to compute the last incremental

weight and weight our particles with the current weight. Also, note that the resampling step
does introduce extra error but does not induce bias, since moments of πN

t does not change.
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Algorithm 2 Sequential Importance Sampling with Resampling (SISR)

1: Sample x
(i)
0 ∼ q(x0) for i = 1, . . . , N .

2: for t ≥ 1 do
3: Sample: x̄(i)t ∼ q(xt|x(i)t−1),
4: Compute weights:

W
(i)
t =

f(x̄
(i)
t |x(i)t−1)g(yt|x̄

(i)
t )

q(x̄
(i)
t |x(i)t−1)

.

Normalise weights,

w
(i)
t =

W
(i)
t∑N

i=1W
(i)
t

.

5: Report

πN
t (dxt) =

N∑
i=1

w
(i)
t δ

x̄
(i)
t
(dxt).

6: Resample:

x
(i)
t ∼

N∑
i=1

w
(i)
t δ

x̃
(i)
t
(dxt).

7: end for

2.4.3 The bootstrap particle filter

In the general particle filter, the proposal q(xt|xt−1) is a design choice to be made and this
depends on our specific knowledge of a good proposal for a given system. For example, one can
incorporate future observations into this proposal in an ad-hoc or use the proposal choices like
in the auxiliary particle filter (APF).

A generic choice exists, however, that is simply setting q(x
(i)
t |x(i)t−1) = f(x

(i)
t |x(i)t−1), i.e., using

the transition density of the SSM under consideration as a proposal. The algorithm simplifies
considerably in this case and the resulting method is called the bootstrap particle filter (BPF)
which is given in Alg. 3. This algorithm has multiple appealing intuitive explanations beyond the
derivation we provided based on importance sampling here. It can be most generally thought
as an evolutionary method. To uncover some of this intuition, see Fig. 2.

To elaborate the interpretation, consider a set of particles x(i)t−1 representing the state of the
system at time t − 1. If our state-space transition model f(xt|xt−1) is well-specified (that is,
if the underlying system we aim at tracking does indeed move according to f), then the first
intuivite step we can do to predict where the state would be at time t would be to move particles
according to f , that is sampling x̄

(i)
t ∼ f(xt|x(i)t−1) which is the first step of the BPF. This gives us

a predictive distribution which consists of x̄(i)t for i = 1, . . . , N . The prediction step (naturally)
does not require to observe the data point at yt. Once we observe the data point yt, we can
then use this data point to evaluate a fitness measure for our particles. In other words, if a
predictive particle x̄

(i)
t is a good fit to the observation, we would expect its likelihood g(yt|x̄(i)t )
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Algorithm 3 Bootstrap particle filter (BPF)

1: Sample x
(i)
0 ∼ q(x0) for i = 1, . . . , N .

2: for t ≥ 1 do
3: Sample: x̄(i)t ∼ f(xt|x(i)t−1),
4: Compute weights:

W
(i)
t = g(yt|x̄(i)t ).

Normalise weights,

w
(i)
t =

W
(i)
t∑N

i=1W
(i)
t

.

5: Report

πN
t (dxt) =

N∑
i=1

w
(i)
t δ

x̄
(i)
t
(dxt).

6: Resample:

x
(i)
t ∼

N∑
i=1

w
(i)
t δ

x̃
(i)
t
(dxt).

7: end for

to be high. Otherwise, this likelihood would be low. Thus, it intuitively makes sense to use our
likelihood evaluations as “weights”, that is to compute a measure of fitness for each particle.
That is exactly what the BPF does at the second step by computing weights using the likelihood
evaluations. The final step is then to use these relative weights to resample – a step that is
used to refine the cloud of particles we have. Simply, the resampling step removes some of the
particles with low weights (that are bad fits to the observation) and regenerates the particles
with high weights.

The connection to evolutionary terms are clearer within this interpretation. The sampling
step in the BPF can be seen as “mutation” that introduces changes to an individual particle
according to some mutation mechanism (in our case, the dynamics). Then, weighting and
resampling correspond to “selection” step, where individual particles are evaluated w.r.t. a
fitness measure coming from the environment (defined by an observation) and individuals are
reproduced in a random manner w.r.t. their fitness.
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Figure 2: Intuitive model of BPF (Figure courtesy Victor Elvira).
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