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Abstract

In this work, we introduce an adaptive noisy importance sampler (ANIS)
for optimization in an online setting. ANIS is an extension of the family
of adaptive importance samplers where the weights are only approximate
as they are computed via subsampling of the available data. Allowing
errors in the weights enables us to use the algorithm in the so-called
large-scale optimization setting, where the cost function consists of the
sum of many component functions. ANIS can be used to optimize gen-
eral cost functions as it does not need any gradient information to update
the parameters. We show how the weights of ANIS are related to those
of adaptive importance samplers and present some computer simulation
results.
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1 Introduction

In signal processing and machine learning, the following type of unconstrained
optimization problem,

min
θ∈Rd

f(θ) =
1

n

n∑
k=1

fk(θ) (1)

where n is large, has attracted a significant attention in recent years. This type
of cost function arises in the so-called large-scale data setting, e.g. when it is nec-
essary to fit a model to a large number of data points. For this setting, classical
optimization techniques are inefficient because the cost function comprises many
individual data points and classical algorithms need to store the whole dataset
in order to update parameters at every step. Stochastic (online) optimization
algorithms emerged as a powerful alternative, due to their excellent trade-off be-
tween statistical and computational efficiency, by obtaining an estimate of the
gradient (termed stochastic gradient) via subsampling the dataset and taking
a stochastic gradient direction at each iteration. This family of algorithms is
called stochastic gradient descent (SGD) techniques. The simplest version of the
algorithm, as first proposed in [1], computes roots of noisy functions. However,
it has been extended in several ways for large-scale machine learning problems,
including second-order variants [2] (see [3] for a thorough, recent review of the
field). In recent years, there has been considerable research activity in this area
and we refer to algorithms of this class as online optimization methods in order
to emphasize that the randomness is arising from the online selection of data
points and also to distinguish them from sampling-based stochastic optimization
methods, which are not necessarily online.

Although online extensions of classical optimization methods have become
mainstream, online extensions of sampling (simulation) based optimization algo-
rithms have not received much attention. Sampling-based methods aim to sam-
ple from a density where the mode coincides with the minimum of the cost func-
tion [4]. There are many variants of these methods under different names such as
simulated annealing [5]. The advantage of using a population-based algorithm is
that it frees the user from computing gradients and removes the differentiability
requirement. Thus, general cost functions, for which gradient-based techniques
are not straightforward to use, can be optimized using sampling-based tech-
niques. Although sampling-based methods have received a significant interest
in the classical optimization literature, they remain relatively unexplored for
online optimization problems in the large-scale setting.

There has been some recent work on how to use Markov chain Monte Carlo
(MCMC) methods in the online setting. These approaches aim at sampling
from a target posterior distribution while using mini-batches at each iteration
of the sampler. One line of research relies on the Langevin equation to simulate
from the posterior distribution, which requires the computation of gradients [6].
Others follow the classical MCMC approach with noisy Metropolis steps [7, 8].
In principle, one can also use these techniques for stochastic optimization, when
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the negative log-likelihood is of the form in (1). Our approach, however, is
fundamentally different as we extend the family of importance samplers (rather
than MCMC methods) to the online setting.

To be specific, we propose a population based online optimizer based on a
variant of adaptive importance sampling [9], also known as population Monte
Carlo [10]. In particular, we introduce the adaptive noisy importance sam-
pler (ANIS) in order to perform optimization in the large scale setting. The
ANIS method is a variant of the adaptive importance samplers (AIS), a class of
algorithms in which at each iteration the proposal distribution is adapted. How-
ever, ANIS is different from conventional AIS algorithms because the weights
are noisy, i.e., not exact. The weight error stems from the fact that we use
an approximation of the target density rather than the target density itself, a
feature that turns out to be useful for running AIS in the large-scale setting.
We provide numerical results to show how the ANIS method can be used for
optimization when the cost function consists of many terms.

2 Optimization and Bayesian estimation

Before we introduce our algorithm, we briefly look at the intersection between
optimization and sampling algorithms. We are interested in solving uncon-
strained problems of the form,

θ∗ = argmin
θ∈Rd

f(θ) (2)

where f(θ) is constructed as in (1). When f(θ) is differentiable and gradients
are cheap to compute (i.e., when n is small), this problem can be solved by
standard algorithms as simple as the gradient descent. When f(θ) is differen-
tiable but n is large, then stochastic gradient type algorithms are quite effective
to solve this problem. However, when f(θ) is not differentiable and n is large,
we need a different approach to find the minimum. To this end, a sampling-
based method can be used. In general, sampling algorithms aim at drawing
from a target density π(θ) by designing a sampling mechanism, which can be
based on importance sampling or MCMC. To see how this can be related to the
optimization problem (2), consider a target density π(θ) of the following form,

π(θ) =
exp

(
− 1
λf(θ)

)∫
Rd exp

(
− 1
λf(θ′)

)
dθ′

(3)

where f(θ) is a convex function and λ is a scaling constant. In this case, the
maximum of the density π(θ) coincides with the minimum of f(θ) and it can be
estimated by drawing samples from π(θ). Moreover, one can obtain the sample
mean,

θ̄ =

∫
θπ(θ)dθ.
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which coincides with the minimum of f when the latter is a symmetric convex
function. We are interested in a general convex f in this paper, though. In this
case, the mean may be different from the exact minimizer. We further discuss
this issue in the experimental section.

The relationship (3) suggests that in order to optimize f(θ), we can design
a sampling mechanism to sample from π(θ). The latter task can be achieved
by sampling algorithms such as importance sampling. This is especially useful
when f(θ) is not differentiable or the gradient is not available in closed form.

3 Stochastic optimization with adaptive noisy
importance sampling

In this section, we first describe an adaptive importance sampling algorithm
(with exact weights) to minimize a given cost function. Then, we introduce the
ANIS method, which is an algorithm for stochastic (online) optimization.

3.1 AIS for optimization

Consider a target density of the form in (3). We define a log-concave potential
φ(θ) = exp(− 1

λf(θ)) where λ is a scaling constant needed for numerical stability.
Note that the choice of λ does not change the maximum of φ(θ). We also
define a proposal density q which is adaptive, which means that new samples
are drawn conditional on the previous ones. Then f(θ) can be optimized using
a population-based scheme described in Algorithm 1. In this setting, we can set
q simply as,

q(θt|θt−1) = N (θt; θt−1, σ
2) (4)

for some σ2 > 0, where N (x;µ, σ2) denotes the Gaussian pdf with mean µ and
variance σ2. We use this proposal in the computer experiments of Section IV.

However, when f(θ) is of the form in (1), evaluating φ(θ) can be quite costly,
because one needs to store the whole dataset and evaluate φ for each sample
used in the population. This renders this algorithm inefficient in the large-scale
setting and it is this problem that we tackle in the following section.

3.2 ANIS for online optimization

We have seen that evaluating φ(θ) can be very costly when n is large. Modern
gradient-based online optimization algorithms use a random mini-batch of data-
points, instead of the full cost function, to approximate the gradient. Here, we
use the same idea to evaluate importance weights: instead of evaluating weights
using the whole cost function, we can obtain noisy weights using a random
subset of data points.

Instead of evaluating φ(θ) at every iteration, we construct a surrogate non-
normalized density φ̃t(θ) at iteration t as follows. We pick a subset of the
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Algorithm 1 AIS for optimization

1: Initialise the population θ
(i)
0 for i = 1, . . . , N .

2: repeat
3: Sample

θ
(i)
t ∼

N∑
i=1

w
(i)
t−1q(θt|θ

(i)
t−1)

4: Set

W
(i)
t =

φ(θ
(i)
t )

q(θ
(i)
t |θ

(i)
t−1)

5: Set

w
(i)
t =

W
(i)
t∑

iW
(i)
t

6: t← t+ 1
7: until convergence

component functions fi1(θ), . . . , fiL(θ) and construct an estimate of f(θ) as,

f̃t(θ) =
1

L

L∑
k=1

fik(θ).

We note that if ik ∼ U({1, . . . , n}) are i.i.d and uniform, this estimate of the
cost function is unbiased, i.e., we have,

E[f̃t(θ)] = f(θ).

One can alternatively write that f̃t(θ) = f(θ)+ξt where ξt is a zero-mean random
variable. Moreover, when L is large enough, ξt is approximately Gaussian by
the central limit theorem. Then we define the non-normalized potential as,

φ̃t(θ) = exp

(
− 1

λ
f̃t(θ)

)
where λ is a scaling constant and effectively a parameter of the algorithm.

Algorithmically, instead of evaluating φ(θ) = exp(− 1
λf(θ), we evaluate φ̃t(θ) =

exp(− 1
λ f̃t(θ)) in a cheap manner since L� n. The rest of the algorithm is the

same as a conventional AIS. The full procedure is outlined in Algorithm 2.
One can see that the logarithms of noisy weights are unbiased. However,

this does not imply that the normalized weights are unbiased as well. In the
following, we clarify how the true and the noisy weights are related to each
other. Before, we need an assumption.

Assumption 1. Given that f̃t(θ) = f(θ) + ξt, we have∫
exp

(
−x
λ

)
pξt(x)dx <∞,
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Algorithm 2 ANIS for online optimization

1: Initialise the population θ
(i)
0 for i = 1, . . . , N .

2: repeat
3: Sample

θ
(i)
t ∼

N∑
i=1

w̃
(i)
t−1q(θt|θ

(i)
t−1)

4: Sample i1, . . . , iL ∼ {1, . . . , n} and set

φ̃t(θ) = exp

(
− 1

λ
f̃t(θ)

)
where f̃t(θ) = 1

L

∑L
k=1 fik(θ).

5: Set

W̃
(i)
t =

φ̃t(θ
(i)
t )

q(θ
(i)
t |θ

(i)
t−1)

6: Set

w̃
(i)
t =

W̃
(i)
t∑

i W̃
(i)
t

7: t← t+ 1
8: until convergence

where pξt(·) is the pdf of the zero-mean error ξt.

This assumption means that the expectation of exp(−x/λ) with respect to
the probability distribution of the random error ξt arising from online selection
of the samples must be finite. The reason will be made clear in the following
proposition.

Proposition 1. The expected non-normalized noisy weight for each sample θ
(i)
t

is proportional to the non-normalized true weight, i.e.,

E[W̃
(i)
t ] ∝W (i)

t , i = 1, . . . , N.

Proof. Recall that we denote the non-normalized “true” weights with W
(i)
t =

φ(θ
(i)
t )/q(θ

(i)
t |θ

(i)
t−1). The weights we use in ANIS are computed as

W̃
(i)
t = φ̃t(θ

(i)
t )/q(θ

(i)
t |θ

(i)
t−1),

instead. If we compute the expectation of the weights in the ANIS with respect

to the distribution of the random error ξ
(i)
t introduced by the approximation of
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φ, we arrive at the following string of equalities,

E[W̃
(i)
t ] = E

[
φ̃t(θ

(i)
t )

q(θ
(i)
t |θ

(i)
t−1)

]
=

E
[
φ̃t(θ

(i)
t )
]

q(θ
(i)
t |θ

(i)
t−1)

=
E
[
exp

(
−f̃t(θ(i)t )/λ

)]
q(θ

(i)
t |θ

(i)
t−1)

=
exp

(
− 1
λf(θ

(i)
t )
)
E
[
exp

(
− 1
λξ

(i)
t

)]
q(θ

(i)
t |θ

(i)
t−1)

= W
(i)
t E

[
exp

(
− 1

λ
ξ
(i)
t

)]
.

However, from Assumption 1,

E[exp(−ξ(i)t /λ)] =

∫
exp

(
−ξ

(i)
t

λ

)
pξt(ξ

(i)
t )dξ

(i)
t <∞

i.e., c = E[exp(−ξ(i)t /λ)] is a finite constant and we arrive at

E[W̃
(i)
t ] ∝W (i)

t .

�

Corollary 1. If L is large enough to ensure that ξ ∼ N (0, v2) for some v2 <∞
by the central limit theorem, then we have

E[W̃
(i)
t ] = W

(i)
t exp

(
v2

2λ2

)
.

These results do not show that the normalized weights are unbiased, which
is the requirement for a noisy AIS algorithm. Instead, we have shown that the
expected values of the non-normalized noisy weights are proportional to their
exact counterparts.

4 Computer experiments

In this section, we present two computer experiments. To evaluate the ANIS

method, we use the mean of the distribution
∫
θπ(dθ) ≈

∑N
i=1 w̃

(i)
t θ

(i)
t where t

is the number of the current iteration – although this choice may not always
converge to the true maximum. Alternatively, one can use more sophisticated
techniques but at the expense of an increase in the computational cost. We
first consider fitting a sigmoid function as an experiment. Then, we consider a
nondifferentiable optimization problem.
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Figure 1: The ANIS algorithm compared to the SGD on a ten-dimensional
problem. ANIS-100 denotes ANIS with 100 particles and ANIS 1K is run with
1, 000 particles. Although ANIS-1K seems to converge faster, note that it is
much heavier than SGD as it uses 1K evaluations of the cost function at each
step. However, SGD needs the gradient information which may not be always
available.

4.1 Fitting a sigmoid function

The model used in this experiment is

yk = gk(θ) + εk =
1

1 + exp(α+ β>xk)
+ εk

where εk ∼ N (0, γ2), xk ∈ Rd−1 denotes the k-th input, and the parameter
vector is θ = (α, β) where α ∈ R and β ∈ Rd−1. In this experiment, we choose
d = 10 and set γ2 = 0.1 to generate the data from the model. The cost function
we attempt to minimize is then

f(θ) =
1

n

n∑
k=1

(yk − gk(θ))2

with n = 5, 000 where fk(θ) = (yk−gk(θ))2. We set L = 1, using a single sample
at each time for the approximation of f(θ), which makes algorithms very cheap
to run.

We have run two instances of the ANIS method with N = 100 and N =
1, 000 samples, respectively. For both algorithms, we have set λ = 10−9 and
σ2 = 10−2. We have used a constant-step-size SGD and tuned the step-size in
order to obtain a good performance. Results can be seen in Fig. 1.

As can be seen from the figure, SGD attains a lower error. This phenomenon
can be explained with two observations. First, we take the mean as the esti-
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Figure 2: ANIS algorithm on a nondifferentiable 2D problem. We compare it
to stochastic subgradient descent (SSD) and conclude that ANIS is able to find
good estimates even with 10 samples.

mator, whereas the cost function is not symmetric, so it is not exactly the
maximizer of the pdf π(θ). Secondly, as the estimate nears the minimum, it
starts fluctuating around the final estimate. One remedy for this would be to
decrease the variance of the proposal, in order to focus to the region around
minimum, similar to decreasing the step-size of the SGD. However, we do not
investigate that option here.

4.2 Large-scale least absolute deviations

In this experiment, we consider a nondifferentiable cost function which comprises
many components. The cost function we use in this experiment is

f(θ) =
1

n

n∑
k=1

|yk − x>k θ|

where θ ∈ R2, xk ∈ R2 and yk ∈ R. This problem is also known as least absolute
deviations (LAD). This cost is not differentiable so gradient-based techniques
are not available. However, one can use subgradient-based methods, in the same
way as in stochastic gradient techniques [11].

We have run the ANIS scheme with N = 10 particles and set λ = 10−4 and
σ2 = 10−4. We have chosen a constant step size for the SSD as 5× 10−3. The
number of data points is n = 10, 000 for this example. We set L = 1, hence
sampling a single data point for each iteration. We note that performance can
be improved by mini-batching, choosing L > 1. The results can be seen from
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Fig. 2. For this example, we can conclude that ANIS is a good candidate for
nondifferentiable optimization in the large-scale setting. We plan to develop
this algorithm in future work.

5 Conclusions

We have proposed an adaptive noisy importance sampler for online optimiza-
tion problems. The version we have proposed in this paper is the most basic
procedure, yet it opens up several interesting future directions. There are many
variants of adaptive importance samplers and, using the strategies proposed in
the literature, the ANIS algorithm can be improved. Among the candidates,
better weight calculations such as [12] or [13] and multiple importance sam-
plers [14] can improve the efficiency of the algorithm drastically. The algorithm
can also be applied to distributed settings, where different noisy Monte Carlo
estimators can be combined to estimate the minimum [15].
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