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Problem definition
Matrix factorization

We are interested in the problem factorizing a data matrix Y ∈ Rm×n

as

Y ≈ CX

with C ∈ Rm×r, the dictionary, and X ∈ Rr×n the coefficients.

I Probabilistic: We want to obtain approximate probability mea-
sures over C and X

I Dynamic: We are interested in the case where Y is a Markovian
process (e.g. a time-series).

I Sequential: We want to process the columns of Y sequentially
in time in a scalable way.
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The Probabilistic Model
A state-space formulation

We aim at solving the matrix factorization problem by solving the
inference problem for the following probabilistic state-space model:

p(C) =MN (C;C0, Id, V0)

p(x0) = N (x0;µ0, P0)

pθ(xt|xt−1) = N (xt; fθ(xt−1), Qt)

p(yt|xt, C) = N (yt;Cxt, Rt),

whereMN denotes the matrix-normal distribution.

The advantages
I Ensures yt ≈ Cxt (which implies Y ≈ CX),
I Encodes fθ: A flexible nonlinearity that can be customized,
I Returns probability measures over C and X (i.e. (xt)t≥1).
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Inference
Scalable and efficient inference with matrix updates

The special structure of our prior on C and the dynamic model en-
ables us to obtain an efficient algorithm that

I approximates p(C|y1:t) and p(xt|y1:t) recursively,
I avoids costly sampling schemes (e.g. Gibbs sampling),
I based on cheap and stable matrix-valued and vector updates,
I enables the encoding of an interpretable structure into the

model using the nonlinearity fθ,
I scales linearly with the number of observations.

We also provide a further robustifiedmodel (and an inference scheme)
for datasets with heavy-tailed noise.
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Inference
Scalable and efficient inference with matrix updates

We achieve these by using

I the assumed Kronecker structure on the covariance of the prior
on C which results in tractable matrix updates,

I the extended Kalman updates and automatic differentiation to
obtain the Jacobian of the coefficient dynamics fθ

I gradient descent on the approximate (and tractable) marginal
likelihood p̃θ(yt|y1:t−1) to optimise the parameters of fθ
I leverage (again) automatic differentiation
I take advantage of modern non-convex optimisers, such as Adam.



Inference
Scalable and efficient inference with matrix updates

We achieve these by using
I the assumed Kronecker structure on the covariance of the prior

on C which results in tractable matrix updates,

I the extended Kalman updates and automatic differentiation to
obtain the Jacobian of the coefficient dynamics fθ

I gradient descent on the approximate (and tractable) marginal
likelihood p̃θ(yt|y1:t−1) to optimise the parameters of fθ
I leverage (again) automatic differentiation
I take advantage of modern non-convex optimisers, such as Adam.



Inference
Scalable and efficient inference with matrix updates

We achieve these by using
I the assumed Kronecker structure on the covariance of the prior

on C which results in tractable matrix updates,
I the extended Kalman updates and automatic differentiation to

obtain the Jacobian of the coefficient dynamics fθ

I gradient descent on the approximate (and tractable) marginal
likelihood p̃θ(yt|y1:t−1) to optimise the parameters of fθ
I leverage (again) automatic differentiation
I take advantage of modern non-convex optimisers, such as Adam.



Inference
Scalable and efficient inference with matrix updates

We achieve these by using
I the assumed Kronecker structure on the covariance of the prior

on C which results in tractable matrix updates,
I the extended Kalman updates and automatic differentiation to

obtain the Jacobian of the coefficient dynamics fθ
I gradient descent on the approximate (and tractable) marginal

likelihood p̃θ(yt|y1:t−1) to optimise the parameters of fθ

I leverage (again) automatic differentiation
I take advantage of modern non-convex optimisers, such as Adam.



Inference
Scalable and efficient inference with matrix updates

We achieve these by using
I the assumed Kronecker structure on the covariance of the prior

on C which results in tractable matrix updates,
I the extended Kalman updates and automatic differentiation to

obtain the Jacobian of the coefficient dynamics fθ
I gradient descent on the approximate (and tractable) marginal

likelihood p̃θ(yt|y1:t−1) to optimise the parameters of fθ
I leverage (again) automatic differentiation
I take advantage of modern non-convex optimisers, such as Adam.



Experimental results
Synthetic dataset

When the subspace model is well-calibrated, we can perform high-
dimensional time-series prediction.

(a) Observed time series (blue)
with unobserved future data (yel-
low) and the reconstruction (red).

(b) True (blue) and predicted
(red) subspace.
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Experimental results
Missing data imputation

More applications in the paper:

I Time-series forecasting (on air quality data),

I Missing data imputation,
I Changepoint detection.

400 500 600 700 800 900 1000 1100 1200

-15

-10

-5

0

5

10

15



Experimental results
Missing data imputation

More applications in the paper:
I Time-series forecasting (on air quality data),

I Missing data imputation,
I Changepoint detection.

400 500 600 700 800 900 1000 1100 1200

-15

-10

-5

0

5

10

15



Experimental results
Missing data imputation

More applications in the paper:
I Time-series forecasting (on air quality data),

I Missing data imputation,

I Changepoint detection.

400 500 600 700 800 900 1000 1100 1200

-15

-10

-5

0

5

10

15



Experimental results
Missing data imputation

More applications in the paper:
I Time-series forecasting (on air quality data),

I Missing data imputation,
I Changepoint detection.

400 500 600 700 800 900 1000 1100 1200

-15

-10

-5

0

5

10

15



Thanks! See you at the conference!
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